MODELING RECOGNITION OF SPEECH SOUNDS WITH MINERVA2

Travis Wade*, Deborah K. Eakint, Russell Webb}, Arvin Agahi, Frank Brown}, Allard Jongman?*,
John Gauchi, Thomas A. Schreibert, and Joan Sereno*®

* Department of Linguistics
TDepartment of Psychology
1 Department of Electrical Engineering and Computer Science

University of Kansas, Lawrence, Kansas, USA
twade@ukans.edu

ABSTRACT!

This study investigates the extent to which a localist-distributive
hybrid formal model of human memory replicates observed
behavioral patterns in perception and recognition of appropriately
coded language data. Extending previous research that considered
for modeled memorization only items with uniform, undefined
randomly generated featural specifications, a MINERVA2
simulation was trained to recognize linguistic events and
categories at both acoustic-phonetic and phonological-featural
processing levels. Results of both test conditions parallel two
important effects observed in behavioral data and are discussed
with respect to speech perception as well as human memory
research.

1. INTRODUCTION

Formal models have been used to emulate various aspects of
human speech perception and memory. The purpose of the present
study is to model the encoding, storage, and retrieval of speech
sounds using the MINERVA2 [1, 2] model. Specifics of this
model’s simulation of behavioral data regarding recognition
memory are discussed below. Furthermore, a series of new
experiments designed to study its ability to learn and recognize
language data at both the acoustic and phonological levels is
presented.

MINERVA? is a unique memory model in that it combines
critical aspects of both localist (in which learned events are
assumed to be stored at discrete nodes) and distributed (in which
events are represented as ordered patterns of features) model
types. In the model, events are themselves comprised of
numerically coded feature patterns, but upon learning they are
represented as discrete locations in memory. Memory, then,
consists of a large collection of observed event items, each
represented by a vector of features with values from the set {1
(present), -1 (absent), 0 (irrelevant or unknown)}. Learning an
event involves application of a learning rate to each feature, such
that not all values are accurately stored, and then copying the
vector into secondary (long-term) memory. The stored vector is
called a memory frace, and its retrieval is achieved by presenting
a new event probe. This probe activates stored traces by
simultaneous comparison with each one, resulting in a composite
echo vector representing the content and intensity of similarity
between the probe and any corresponding previously learned
vector(s).
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MINERVA2 has been shown to simulate findings from
behavioral studies involving, among other things, effects of
category frequency on recognition of related and unrelated words.
In a behavioral study [2], human subjects studied large word lists
divided into semantic categories represented by 1, 2, 3, 4, or 5
closely related words, so that occurrence frequency of categories
during learning was varied. At test, participants were presented
with two items, one old (learned) and one new, and asked to
identify the old item. In a related condition, the two items were
taken from the same semantic category, and in an unrelated
condition they came from different categories of the same
occurrence frequency. As shown in Figure 1, ability to recognize
old items decreased with increasing category frequency, due to
within-category interference. Additionally, performance was
better for related item pairs than for unrelated pairs.
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Figure 1: Behavioral data from Experiment 2 of [2]. The solid line
represents related word pairs; the dotted line represents unrelated
word pairs.

As outlined in [4], MINERVA2 performance on a parallel,
simulated recognition task shows both of these important effects.
A commonly observed shortcoming of such studies claiming
that formal models such as MINERVA?2 are therefore successful
in modeling perception of events as complicated and varying as
those occurring in natural language, however, involves their
formulation of event-defining features for learning. In previous
research, feature values are typically generated randomly, with no
attempt to replicate or even represent the content or redundancy
associated with real-world information. Thus, the present study
seeks to investigate the extent to which previously observed
(frequency and relatedness) patterns in the model’s recognition
memory maintain when learned data constitute tenable



representations of phonetic and phonological information. In one
experiment, feature values for item formulation denote
specifications of language sounds as defined by human
phonological patterning behavior; in another, they represent
spectral information known to be used in identifying vowel sounds
perceptually.

2. EXPERIMENTS

2.1 Experiment 1

The first experiment replicated Simulation 2 from [2], in which
simulated MINERVA2 subjects demonstrated recognition
memory by performing forced-choice decisions on pairs of test
probes. Learning consisted of storing 60 original items, grouped
into equal numbers of categories (20 total) containing 1, 2, 3, 4,
and 5 members, in a secondary memory with learning rate L=.70.
Items each contained 20 features with values from the set {-1, 0,
1}; items within a category were defined by applying a .30
distortion rule to a randomly generated prototype. In the testing
phase, recognition of old items by subjects was accomplished by
comparing echo intensities between probe pairs of an old item and
a new item from either the same category (related condition) or
another category of the same frequency (unrelated condition).

2.1.1 Results

Results for Experiment 1 are shown in Figure 2. As in [2], results
were in good agreement with human data with regard to pair
relatedness and category frequency effects: old items were better
recognized when paired with items of the same category compared
to items of another category, and accuracy decreased with
increasing category membership.

100

95 -
90 -
85

80 -

percent correct responses

75

1 2 3 4 5
category frequency

Figure 2: Averaged recognition accuracy of items defined by
randomly generated features. The solid line represents related
word pairs; the dotted line represents unrelated word pairs.

2.2 Experiment 2

The second experiment involved the same MINERV A2 simulation
described above and a similar recognition task, except that items
for memorization were representations of possible English CVC
words rather than uniform distortions of randomly generated

feature lists. Each phoneme in a word was represented by values
of +1 (present), -1 (absent), or 0 (unspecified?) for each of 18
features considered linguistically relevant based on their
phonological behavior, following representations from [3] and [4],
for a total of 54 features for each item. These features, with their
values for a sample set of seven phonemes, are shown in Table 1.
Word categories were defined prosodically, with members within
a category sharing (in separate tests) either an onset consonant (C)
or a thyme (VC).

FEATURE d s tSm1I o

consonantal | 1| 1| 1| 1| 1] -1| -1
sonorant 10 -1 -1 -1 1] 1) 1
continuant | -1| -1| 1| 0 1| 1] 1
strident -1 -1 1) 1) -1) -1] -1
nasal -1 -1 -1} -1} 1) -1 -1
lateral -1 -1f -1} -1} -1} -1 -1
voice 10 1 -1 -1 1) 1)1
labial 1| -1) -1] -1 1| -1 1
round -1 0] Of O -1] 0] 1
coronal -1 1) 1) 1) -1 -1 -1
anterior 0 1] 1/ -1 0 Of O
distributed 0l 0 -1 1| 0 0 0O
dorsal -1 -1 -1 -1 -1) 1] 1
high 0l 0 Of 0f O 1] -1
low 0l 0 O 0f O -1] -1
back ol 0 0l 0f 0 -1] 1
radical -1 -1 -1 -1} -1 1) 1
ATR/tense 0 0 O of 0 -1 1

Table 1: Features used to create Experiment 2 items with sample
specified phonemes.

As in Experiment 1, 20 categories of 1 to 5 members in equal
proportions were stored in memory, and simulated subjects
compared echo intensities for probe pairs from the same or same-
frequency categories. Preliminary testing indicated that non-
random, linguistically determinate asymmetry in phoneme-to-
phoneme featural similarity was sufficient to obscure any
categorically defined relatedness or frequency effects in such
small individual lists. Therefore, to uniformly distribute this
asymmetry over appropriately large numbers of categories and
members, the simulation was extended to generate multiple
randomly specified 60-member (20-category) sets and to average
recognition accuracy over the separate subjects created for each
set. In this manner, item set structure in accordance with previous
experiments and satisfying size limitations imposed by the
phonemic inventory of English could be maintained while
removing effects specific to individual wordlists.

2.2.1 Results

As shown in Figure 3, recognition results for sets of both onset-
defined and rhyme-defined categories parallel both human
behavioral data and simulated results from [2], showing both pair
relatedness and category frequency effects. However, accuracy for
each condition is substantially lower here than in the case of
randomly generated features, owing to the overall greater-than-

?Formally, viewed as a phonological feature-tree node not present
due to the absence or (-) value of a dominating node.



chance similarity inherently present between all pairs of CVC
words (e.g. all vowels share certain features, as do all consonants).
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Figure 3: Averaged recognition accuracy of items representing
CVC words in onset-defined (top) and rhyme-defined (bottom)
categories. Solid lines represent related word pairs; dotted lines
represent unrelated word pairs.

2.3 Experiment 3

A final experiment extended these results by modeling the
recognition of real acoustic data, where variation within and
across categories resulted from human inconsistency in production
rather than uniform random distortion of any kind. Experiment,
again employing the forced-choice recognition task from
Experiment 3, used as trace/probe items acoustic representations
of actual vowel productions across a speaker condition. Three
tokens each of the English vowel /a/, following the four voiceless
fricatives and preceding the phoneme /p/ in a CVC syllable, were
produced by 20 speakers. Productions used were previously
recorded by 10 male and 10 female speakers as part of [5]. Tokens
were digitized at 22.05kHz, and spectral properties of each vowel
were analyzed and adapted to feature lists automatically using the
sview 1.0 package from the CSLU Speech Toolkit [6]. Spectral
intensity values corresponding to 64 equally spaced frequency
regions from 0 to 8kHz were first averaged over the 50ms
preceding the vowel midpoint. Then, a convolution of this
representation along the frequency axis was created by averaging

intensity values for the five regions centered around each of the 60
central points, as shown in Figure 4.
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Figure 4: Observed and convoluted versions of typical vowel
spectra for feature formulation, with sample feature designations
noted; dotted line represents the convolution.

Each vowel was then assigned a 60-member feature representation
based on the position of each point on the actual spectrum with
respect to its corresponding point on the convolution line: if a
given spectral point was an (experimentally determined) large
distance above the average of its surrounding points, this point
was considered relatively likely to be at or near a local peak in
spectral intensity (representing a fundamental or formant
frequency), and was assigned a value of (+)1. If a point was
similarly below its convoluted correspondent, it was assumed very
unlikely to represent such a location and assigned a —1 feature
value. If the two representations were nearly equal, a value of 0,
denoting an intermediate or irrelevant intensity, was assigned.
Thus, (semi-) continuous values for both frequency and intensity
of each vowel’s spectrum were collapsed into a single one-
dimensional array of discrete values.

Items were then grouped into categories with members
sharing speaker subjects. As in Experiment 2, -category
frequencies were randomly chosen from among the 20 speakers,
and appropriate numbers of individual tokens were chosen for
each category to create lists for memorization. Large numbers of
lists were generated as in Experiment 2, and forced-choice
recognition accuracy values for the task described above were
averaged over the lists.

2.3.1 Results

Results for Experiment 3 are shown in Figure 4. Once again,
relatedness and frequency effects were clearly maintained in
agreement with previous studies. In this case, overall recognition
rates were in general higher in all cases than in previous
conditions due to the larger (60 features) item size compared to
Experiment 1 and less within-category interference caused by
overall somewhat greater dissimilarity between items both within
and between categories compared to Experiment 2.
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Figure 5: Averaged recognition accuracy of items representing
vowel spectra. The solid line represents related word pairs; the
dotted line represents unrelated item pairs.

3. CONCLUSION

Results are consistent with the notion that MINERVA?2 in fact
successfully models human memory for perceived language
events. The present experiments demonstrate that relatedness and
category frequency effects observed in human word recognition
can be replicated by the model in processing not only randomly
specified feature lists but also realistic linguistic information.
After replication of previous findings in Experiment 1,
Experiment 2 showed effects of relatedness and category
frequency in recognition of phonological specifications of possible
English CVC words. Experiment 3 further extended the model’s
claims in successfully utilizing acoustic information from actual
production data. This latter finding is additionally consistent with
behavioral data from research regarding Transfer-Appropriate
Processing and Context-Dependent Learning (see [7, 8, 9]), where
learning task and/or context (cf. speaker category) correlate to
recognition accuracy with respect to these same factors at testing.
Further research could reveal the extent to which these trends
apply to simulated memory at other levels of linguistic processing,
such as the semantic and syntactic levels.
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