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a b s t r a c t 

Using computer-vision and image processing techniques, we aim to identify specific visual cues as induced by 
facial movements made during Mandarin tone production and examine how they are associated with each of 
the four Mandarin tones. Audio-video recordings of 20 native Mandarin speakers producing Mandarin words 
involving the vowel /3/ with each of the four tones were analyzed. Four facial points of interest were detected 
automatically: medial point of left eyebrow, nose tip (proxy for head movement), and midpoints of the upper and 
lower lips. The detected points were then automatically tracked in the subsequent video frames. Critical features 
such as the distance, velocity, and acceleration describing local facial movements with respect to the resting 
face of each speaker were extracted from the positional profiles of each tracked point. Analysis of variance 
and feature importance analysis based on random forest were performed to examine the significance of each 
feature for representing each tone and how well these features can individually and collectively characterize 
each tone. Results suggest alignments between articulatory movements and pitch trajectories, with downward or 
upward head and eyebrow movements following the dipping and rising tone trajectories respectively, lip closing 
movement being associated with the falling tone, and minimal movements for the level tone. 
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. Introduction 

This study aims to identify the visual-articulatory features of Man-
arin Chinese tones. Mandarin employs tone, a prosodic entity, to con-
ey lexical meaning. Tones are acoustically manifested by changes in
undamental frequency (F0, perceived as pitch) primarily as well as du-
ation and amplitude, which are triggered by glottal and sub-glottal
ctivities independent of vocal tract configurations ( Howie 1976; Yip
002 ). This poses the question as to whether tones are visually distinc-
ive. 

Substantial research has shown that complementary information
athered from visual cues provided by speakers’ facial movements, par-
icularly lip movements such as opening, rounding, and spreading, can
trengthen the signal quality of speech segments and facilitate speech
egmental perception ( Kim et al., 2014b; Perkell et al., 2002; Tang et al.,
015; Traunmüller et al., 2007 ). On the other hand, research has not
een conclusive about how prosody, including tone, may benefit from
isual information, presumably because prosodic production does not
ely on vocal tract configurations and may thus be less visually salient.
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here has been evidence that head, jaw, eyebrow, neck, and lip move-
ents may convey visual information in tonal and/or general prosodic
roduction and perception ( Attina et al., 2010; Burnham et al., 2001;
hen et al., 2008; Cvejic et al., 2010; Kim et al., 2014a; Munhall et al.,
004; Swerts et al., 2010; Yehia et al., 2002 ). However, the extent to
hich such movements provide linguistically meaningful cues to signal

onal category distinctions or are general attention-grabbing cues is not
lear. In particular, research has not agreed on which specific move-
ents are used to characterize the visual differences of different tones,

r on which methods can effectively identify and quantify these visual
onal distinctions. 

The present study systematically examines how visual cues are em-
loyed in Mandarin tone production, using state-of-the-art computer-
ision and image processing techniques. On pre-recorded video, we
dentify specific visual cues induced by facial movements in the pro-
uction of each tone, measure the manner and extent of these move-
ents using both distance- and time-based metrics, and rank their rela-

ive prominence in characterizing each tone. 
 2019 
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.1. Mandarin tones 

Four lexical tones are used in Mandarin. They can be described by
0 contour as level, rising, and falling; and F0 register as high, mid, and
ow ( Howie 1976 ). Tone 1 (high-level) has a steady, high F0 contour;
one 2 (mid-high rising) briefly falls to mid-high and rises to a high F0

evel; Tone 3 (mid-low dipping) falls to mid-low and rises to mid-high
0; and Tone 4 (high-falling) begins at a high F0 level and drops quickly
o a low F0 level ( Chao 1948; Howie 1976; Wang et al., 2003 ). Mandarin
ones also vary in duration, with Tone 3 being the longest and Tone 4
he shortest ( Lin 1965 ). Additionally, it has been observed that the F0
urning point (the point in time at which the F0 contour changes from
alling to rising) for Tone 2 occurs earlier than for Tone 3 ( Dreher et al.,
968 ). Further research reveals that the acoustic cues typically used
n perception not only include static cues such as F0 height and con-
our direction ( Gandour 1983 ), turning point F0 and time ( Moore et al.,
997 ), and overall duration ( Blicher et al., 1990 ), but also dynamic cues
haracterizing F0 slope and contour shape, such as the velocity and ac-
eleration of F0 fall or rise ( Krishnan et al., 2009; Prom-on et al., 2009;
rom-on et al., 2012; Xu et al., 2006 ). These acoustic tonal features
ay be articulatorily manifested as spatial and temporal changes in the
istance, direction, duration and speed of movements, since pitch has
een claimed to be audio-spatial in representation ( Connell et al., 2013;
annah et al., 2017 ). 

.2. Prosodic and tonal visual cues 

Research has demonstrated that head movements occur more fre-
uently and are larger in prosodic constituents with a larger amount
f variance in F0 ( Munhall et al., 2004; Yehia et al., 2002 ), for ex-
mple, in sentences with strong focus ( Kim et al., 2014a; Swerts
t al., 2010 ), stressed syllables ( Scarborough et al., 2009 ), and in-
errogative intonation ( Srinivasan et al., 2003 ). Head motion has
lso been found to be associated with F0 in lexical tone production.
urnham et al. (2007) showed that head movements (e.g., nodding, tilt-

ng, rotation towards the back), as computed from the principal compo-
ent analysis on kinematic sensor data, were correlated with F0 changes
n Cantonese tones. Using the same approach, Attina et al. (2010) further
ound back and forth head movements to be correlated with F0 modu-
ation of contour tones (Tones 2–4 in Mandarin), while head nodding
as correlated with production of a high tone (Tone 1 in Mandarin).
owever, since the data in these studies were not quantified in terms
f the direction and magnitude of movement, it is not clear if and to
hat extent these head movements correspond to specific changes in

one (F0) height and contour direction. One piece of evidence showing
 directional association between head movement and F0 is the case of
one 3 in Mandarin. Chen et al. (2008) reported improvement of Tone
 identification when perceivers’ attention was directed to the head dip-
ing movement (as well as movements in the neck) in the production of
his tone. Similarly, a lowered jaw position was found in the production
f a low tone (Tone 3) in low vowel contexts ( Shaw et al., 2014 ). These
atterns suggest a positive correlation between head/jaw movements
nd changes in F0 in the production of prosodic tonal variations. It has
een speculated that head and jaw lowering or raising can be triggered
y the reduced or tightened vocal folds (movements of the cricothy-
oid muscle and ligaments) associated with low- or high-pitched tones
 Moisik et al., 2014; Smith et al., 2012; Yehia et al., 2002 ). However,
uantitative data are still needed to further determine the magnitude
nd trajectory of head/jaw movements in individual tone articulation. 

Eyebrow movements have also been observed to be associated with
rosodic articulation ( Cvejic et al., 2010; Kim et al., 2014a; Munhall
t al., 2004; Swerts et al., 2010; Yehia et al., 2002 ), although no research
as focused on tone. Data from kinematic measures reveal larger vertical
yebrow displacement (from the neutral baseline position) and higher
eak velocity of eyebrow movements for the focused word in a sentence
 Kim et al., 2014a ). Furthermore, eyebrow raising has been shown to
48 
ccur more frequently and align better with accented than unaccented
yllables, and with strongly than weakly accented syllables (based on
ideo analysis by human annotators, Flecha-García 2010; Swerts et al.,
010 ); and to be greater in displaced distance for phrasal stress (by mea-
urements of eyebrow displacements acquired through motion tracking,
carborough et al., 2009 ). These results indicate that eyebrow move-
ents may be coordinated with F0 for prosodic contrasts, although their

pecific relevance to F0 changes (in terms of height and direction) is
ot straightforward or invariably evident ( Ishi et al., 2007; Reid et al.,
015 ). Although they did not specifically focus on prosody, Huron et al.,
2013) did report a causal relationship between vertical eyebrow dis-
lacement and F0 height through manipulation of eyebrow movements.
y instructing the speakers to raise or lower their eyebrows to different
egrees during reading, the authors found higher eyebrow placement
o be associated with higher vocal pitch. These results motivate the in-
lusion of vertical eyebrow movements in the present study as potential
orrelates of tone height and direction. 

Lip movements typically signal segmental rather than prosodic con-
rasts, since the articulation of prosody does not rely on vocal tract con-
guration. Nonetheless, there has been evidence that lip movements
ay be spatially and temporally aligned with prosodic changes ( Dohen

t al., 2005; Dohen et al., 2006; Scarborough et al., 2009 ). For exam-
le, Scarborough et al. (2009) found that the largest magnitude of lip
ovements (in terms of lip opening displacement as well as inter-lip dis-

ance) was associated with lexical and phrasal stress. For Mandarin tone
roduction, Attina et al. (2010) reported a general correlation between
ip closing and F0 (irrespective of tones), as well as unique patterns for
ndividual tones (Mandarin Tones 1 and 2). In particular, Tone 1 was
haracterized by lip raising (as well as jaw advancement), suggesting a
otential link between these movements to the height or the lack of con-
our of this high-level tone; in contrast, Tone 2 production was mainly
istinguished by lip protrusion, which presumably could be related to
he rising contour. Mixdorff et al. (2005) tested the perceptual relevance
f lip movements in Mandarin tone production. By showing only the
ower half of the speaker’s face, perceivers were forced to focus on ar-
iculatory movements of the lips and chin. Results show that tone identi-
cation improved significantly when additional visual information from
he chin and lips were provided compared to the audio-only condition,
uggesting facilitative effects of lip and chin movements in tone percep-
ion. However, from of all these studies, it remains unclear what kinds
f lip movements characterize each individual tone, and whether and
ow they correspond to changes in tone height and contour. 

Taken together, these results collectively suggest that specific move-
ents of the head, eyebrows and lips are correlated with tonal articula-

ion, and are likely coordinated with the spatial and temporal dynam-
cs of the production of different tones. The current study thus exam-
nes visual cues to Mandarin tone production to systematically quantify
he displacement distance, time, and kinematics in order to determine
he magnitude, direction, and manner of these movements in individual
one articulation, as well as how they characterize each tone. 

.3. Analysis methods in prosodic and tonal studies 

Research has not been consistent with respect to the methods used
o acquire and analyze articulatory movement data. One traditional
ethod involves annotated video analysis conducted by human anno-

ators (e.g., Flecha-García (2010) , in their study of pitch accent artic-
lation). The constraint of this method is that only those movements
hat are observable by the annotators of a particular study are logged.
s such, data are not only judged in a subjective manner, but are also

imited to frequency judgment (e.g., number of occurrences of eyebrow
ise) and thus preclude examination of the intensity or magnitude of the
otion. 

Sensor-based devices enable acquisition of more precise and quanti-
ed data. Shaw et al. (2014) used electromagnetic articulography (EMA)

n their study of tone-vowel coproduction. By tracking the flesh points
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markers) attached to speakers’ tongue, lips, and jaw, it is possible to
easure the spatial variations such as jaw displacement and tongue-to-

aw distance with millimeter precision. A commonly used sensor-based
otion capture system is the OPTOTRAK (Northern Digital Inc.) sys-

em, which involves infrared emitting markers positioned on various
ocations on the head (e.g., Burnham et al., 2007; Kim et al., 2014a;
ttina et al., 2010 ). For example, Kim et al. (2014a) used OPTOTRAK

o capture eyebrow and jaw movements for sentence focus and quanti-
ed the movements in terms of displacement and peak velocity. Simi-

arly, in Scarborough et al. (2009) , retro-reflectors were attached to the
peaker’s face for recording by the Qualisys motion capture system, al-
owing analysis of lip, eyebrow, and head displacement magnitude and
ovement velocity. However, the use of sensor-based motion tracking

or data analysis has several limitations. First, since sensors are physi-
ally attached to the speaker’s face, speakers may experience discomfort
nd consequently exhibit unnatural facial movements. Another limita-
ion with the use of sensor-based analyses is that only the regions where
ensors are placed can be examined. Additionally, although quantifica-
ion of movements is possible using a sensor-based approach ( Kim et al.,
014a; Scarborough et al., 2009 ), no such data have been reported for
ones (e.g., Burnham et al., 2007; Attina et al., 2010 ). 

To overcome the limitations of the previous video- and sensor-
ased approaches, our research team has developed an approach using
omputer-vision and image-processing techniques, which bypass the in-
olvement of human annotators or use of sensors ( Tang et al., 2015 ).
his approach has been employed successfully in determining the facial
ues for English vowel production ( Tang et al., 2015 ). Specifically, the
echniques combine the use of video capture and image analysis algo-
ithms to respectively record and extract features that describe facial
ovements. This marker-free approach makes it possible for speakers

o speak naturally, for any region on the speaker’s face to be tracked
nd analyzed, and for the same speaker’s face to be directly used in
erception studies. 

.4. The present study 

The present study focuses on several underexplored research direc-
ions for understanding the role of visual cues in Mandarin tone pro-
uction. Firstly, it is unclear which specific visual cues are used in char-
cterizing individual Mandarin tones and which cues make each tone
istinct from the other tones. Secondly, research has not systematically
uantified the visual cues in tone production in terms of the magni-
ude, direction, relative time and kinematics in association with tone
eight and contour changes. Thus, the extent to which such cues are
inguistically meaningful has not been determined. Moreover, regard-
ng methodology, since previous research employed a variety of data
cquisition and analysis techniques and focused on different facial re-
ions, there is a lack of consistency and comparability in the findings
cross studies. 

The present study aims to address these questions using computer-
ision and image-analysis techniques to systematically identify and ex-
mine the features extracted from motion captures of speakers’ produc-
ions of Mandarin tones in single words. Accordingly, our objectives are
o: (1) present a computerized framework that can systematically char-
cterize facial movements of speakers made during tone production as
aptured in videos; (2) determine a set of features that describe the lo-
al facial movements associated with the production of each tone; (3)
xamine the representation power of each feature for each tone; and (4)
xplore how well these features can individually and collectively charac-
erize each tone via traditional statistical methods and machine-learning
lgorithms. 

With respect to methodology, the present approach extends the
ang et al. (2015) study on segments to the prosodic domain, namely
one. This involves motion tracking of additional anatomical regions
e.g., eyebrows in addition to lips) and using additional measures and
machine-learning) algorithms for analysis, based on a collection of fea-
49 
ures previously shown to be relevant for general prosodic or tonal ar-
iculation ( Attina et al., 2010; Kim et al., 2014a; Krishnan et al., 2009;
carborough et al., 2009 ). Specifically, a set of features based on the
istance, relative time, and kinematics such as velocity and accelera-
ion of the keypoints on the head, eyebrows, and lips were extracted
rom videos and subsequently analyzed. This approach may thus help
s identify the unique features characterizing each tone in Mandarin. 

. Materials 

.1. Speakers and stimuli 

Twenty native Mandarin speakers (12 female and 8 male) between
he ages of 18–28 years old with an average age of 22.6 years were re-
ruited. All the speakers are native speakers of Mandarin and residing
n Canada for less than five years. From each of the speakers, approxi-
ately 100 pronunciations of tone quadruplet words were recorded in

hree sessions with two breaks. The monosyllable /3/ with four Man-
arin tones was used in this study, carrying the meaning of graceful
/ ̄3 /; Tone 1, level tone), goose (/ ́3 /; Tone 2, rising tone), nauseous
/ ̌3 /; Tone 3, dipping tone) and hungry (/ ̀3 /; Tone 4, falling tone) re-
pectively. In addition to the /3/ word we also recorded /i/ and /u/
ords as fillers. Speakers were asked to read out each of these monosyl-

abic tone words that was presented on the screen first in a plain speech
tyle and then in a clarified speech style. Both styles were included in
he analyses to provide a broader range of within-category representa-
ion of each tone. Each word was presented individually. The average
uration of the target stimuli was 580 ms (SD = 193 ms) across styles,
ones and speakers. 

.2. Data acquisition 

All recordings were made in a sound-attenuated booth in the Lan-
uage and Brain Lab at Simon Fraser University. The stimuli for elicita-
ion were displayed on a 15-in LCD monitor that was situated three feet
n front of the speaker, positioned at eye-level to facilitate the place-
ent of a front-view video camera, which was placed below the mon-

tor on a desktop tripod. Each speaker was recorded individually and
as instructed to sit with his/her back against a monochromatic green
ackdrop. High definition front-view video recordings were made with
 Canon Vixia HF30 camera, recording at a frame rate of 29 fps. 

. Methods 

.1. Video analysis 

.1.1. Overview 

Our fully automatic video-analysis was implemented using MATLAB
nd consists of the following steps: (1) video segmentation; (2) point-
etection to locate the keypoints on the face viz. the medial end of the
yebrow, the nose tip and the cupid bows of the lips; (3) keypoint track-
ng to record the spatial coordinates of the detected points over time
over the duration of the utterance of the token); (4) feature extraction
rom the tracked keypoints. 

.1.2. Video segmentation 

Tone utterances were segmented first using automatic tools. Segmen-
ation of the video tokens was based on the audio signal ( Garg et al.,
018 ). Only the portion of the video frames whose audio power (ampli-
ude) was above a certain threshold ( 𝜌 = 0 . 2 × maximum value) was ex-
racted. This was done to remove any extraneous noise from the record-
ng (such as cough sounds or keystrokes of keyboard) and to keep only
he audio corresponding to the word spoken. The value of the thresh-
ld was empirically decided and was set at 20% of the maximum value
ound in the token. We further added a fixed amount of buffer on both
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Fig. 1. Green points are those detected automatically by our keypoint-detection 
algorithm, four of which, shown in red, were then subsequently tracked for 
motion characterization of each region of interest. 
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1 The closer the speaker was positioned to the camera, the more points were 
sampled because the ROI would be larger. 
ides (10 frames, approx. 0.3 s) of the video token to compensate for im-
recision errors due to segmentation. Each video token was then eval-
ated by two native Mandarin speakers for quality of the video (e.g.,
o eye blinking during production). Lastly, each token was rated by
wo other native Mandarin speakers for intelligibility of the audio sig-
al. Only the tokens that were correctly perceived as the intended tone
ords were included. Across all tokens, 1.85% were rated as incorrectly
ronounced and thus excluded from further analysis. 

.1.3. Detection of regions-of-interest and keypoints 

After segmentation of the tokens, a set of keypoints were identified
hat would be tracked in the video during the utterance. We examined
he movements at three regions-of-interest (ROI): the head, eyebrow (we
andomly selected the left side), and the lips. At first, a rough bounding
ox on each relevant facial part was localized using the cascade filter
pproach of Lienhart et al. (2003) . Subsequently, part-specific detectors
ere used to obtain better localizations of the ROIs. Details are provided
elow for each of the ROIs examined. 

Face : Before detecting any parts of the face, the face itself needed to
e detected. For this purpose, a set of Local Binary Pattern (LBP) cascade
lters ( Ojala et al., 2002 ) was used to obtain an initial set of possible
andidates. Since we know at any time there is only one face in the
ideo recording, we used different merge-thresholds in increasing order
ntil the filter provided one output bounding box. Using the thresh-
ld, groups of co-located detections that meet the threshold value were
erged to produce one bounding box around the target object. Thus, if

he threshold is low, fewer detections are merged and the cascade filter
ill suggest several face possibilities; if the threshold is high enough, it
ill merge similar detections and the detector will show fewer face pos-

ibilities. In our analyses, one fixed threshold did not seem to work for
ll video segments and for all speakers reliably. Hence, we automatically
ried different threshold values until we obtained one face detection. 

Once the face was detected, the search was narrowed down to the
rea present within the detected face region. Limiting the search space
o the face region helped reduce the large number of false positive de-
ections that could be present in the background. 

Left eyebrow : We first detected the eyes by using a set of LBP cas-
aded filters of two types: the first type was used to detect both eyes
hich were then localized with a single bounding box, while the sec-
nd type of filters were used to localize the left and right eye indepen-
ent with two separate bounding boxes. Detecting the entire set of eyes
elped narrow down the search space further. Similar to the face, merge
hreshold was adjusted for the pair of eyes as well to get one estimate of
he location of eye-pair. Then we applied a left-eye specific filter to get
ifferent possibilities of the left eye. The left eye bounding box was then
hosen based on the distance from the top left corner of the bounding
ox of the detected eye-pair to the left eye bounding box. The box that
ad a minimum distance was selected. 

Once the left eye was robustly detected, the contour of the left eye-
row (superciliary ridge line) was identified. Several sources of infor-
ation relating to edges, approximate position relative to the bounding

ox of the detected eye, and color (e.g., eyebrows are darker in color as
ompared to the skin) were used to estimate the left eyebrow. The esti-
ated eyebrow contour was then refined using an active contour model

 Chan et al., 2001 ). 
Nose/Head : We used the nose as a proxy for head movement as

t is rigid and treated any movements observed for the nose as head
otion as done in previous studies ( Cai et al., 2012; Tu et al., 2009 ). The
ose was again detected using a cascade filter and adjusting the merge-
hreshold, until there remained one bounding box. Since the lower part
f the nose has a well-defined edge, as a post-processing step, an active
ontour model was used to find the exact boundaries of the nose. 

Lips : Lips were detected using the mouth cascade detector
 Castrillón et al., 2007 ). Once the bounding box was obtained, the ex-
ct contour of lips was detected in HSV space (as opposed to RGB color
pace). This was done since the differences are much more amplified
50 
n HSV space. In HSV, a threshold value was used to estimate a rough
ontour around the lips which was further refined using active contour
odelling. 

For each ROI, several points of interest along the boundary of the
pecific part of the face were sampled. These points vary in number
ased on the length of the edge in the first frame as well as the distance
f the speaker from the camera. 1 

.1.4. Tracking of keypoints 

Given the set of contours extracted for each ROI as described above,
 to 2 keypoints on each contour were further extracted and motion-
racked. In particular, the eyebrow keypoint was computed as the geo-
etric mean of the detected superciliary ridge contour of the eyebrow,
hile the nose keypoint was computed as the geometric mean of the
etected nose contour. For the motion-tracking of the lips, one point on
he upper lip (indicated by cupid’s bow) and another point on the lower
ip (indicated by the center point between the two oral commissures on
he lower vermillion border) were detected and subsequently tracked.
xamples of the extracted points on a randomly chosen video frame are
hown in Fig. 1 . 

Once the aforementioned keypoints were identified on the first frame
f each video token, they were tracked on the rest of the video frames
sing the Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm ( Lucas
t al., 1981; Tomasi et al., 1991 ), which is a computationally efficient
nd robust registration technique that employs intensity gradients of
ach image frame to derive pixel-wise correspondences between two
onsecutive frames. 

After performing tracking with the KLT algorithm, we obtained a set
f motion trajectories for each keypoint. Any motion due to the head
as subsequently removed from the eyebrow and the lips by subtracting

he head displacements from the displacement of the eyebrow and lip
eypoints. 

.1.5. Feature extraction 

With a set of motion trajectories computed from the head, eyebrow,
nd the lips, we next computed a set of features selected to quantify
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Fig. 2. The measurements shown are normal- 
ized measurements (normalized to the head 
size) and the units are in pixels, pixels / frame, 
and pixels / frame 2 for distance, velocity and ac- 
celeration, respectively. 
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he motion dynamics of each for the four tracked keypoints and to pro-
ide summary statistics of the local (eyebrows and lips) and rigid (head)
ovements. 

These features can be broadly classified into three categories: (1)
istance-based , such as the minimum and maximum total displacement
f a keypoint from its initial resting position to a position marked by a
arget event; (2) time-based , such as the time it took the displacement
f the keypoint of an ROI to reach maximum or minimum distance;
nd (3) kinematic , such as the velocity and acceleration of a keypoint
t specific time instances marked by some target events (e.g., instance
hen velocity reached a maximum). 

An example of how the trajectory of an eyebrow keypoint is used to
ompute the features is shown in Fig. 2 . The plots in this figure show
ow distance (top), velocity (middle), and acceleration (bottom) of an
yebrow keypoint changed over time when a target word was uttered
n a randomly selected video token. The top figure plots the distance
raveled by an eyebrow keypoint over time with respect to its initial
osition. The middle and bottom figures, respectively, plot the velocity
nd acceleration at which the same keypoint was traveling. 

A summary of all features extracted in this study is listed in Table 1 .
hese features were chosen in an attempt to capture the different vari-
tions that could be introduced by the pronunciation of different tones.

These features were extracted only for the video frames where the
peaker’s voice was detected on the audio channel. Furthermore, all the
eature values were normalized to account for inter-speaker differences
n head size and differences in the distance of the speaker from the cam-
ra. Normalization was done by dividing the feature values by a normal-
zation factor computed as the shortest distance between the line joining
he two eyes and nose tip. 

Note that the features were measured only in the vertical direction
nd thus any movements in the horizontal direction were not included.
his is intentional as the raising and lowering of the pitch have been
ound to be associated only with vertical upward or downward articu-
atory movements ( Kim et al., 2014a; Huron et al. 2013 ). 
t

51 
Fig. 3 (a) shows a schematic diagram illustrating how the distance-
ased features and kinematic features are related. Fig. 3 (b) further ex-
lains how the time-based features relate with the rest of the extracted
eatures. In Fig. 3 (b), the violet regions mark the time instances when a
racked keypoint moved downward and hence represents the lowering
ovements of the head and eyebrow, or closing of the lips, while the
ink region represents rising movements of the head and eyebrow, or
he opening of the lips. As distance-based features, we calculated the
inimum and maximum distances that each of the tracked keypoints
oved from its initial resting state. We also calculated their correspond-

ng minimum and maximum velocities. Note that velocity is indicated
y the slopes of the curve (i.e., computed as rate of change of the curve)
nd the acceleration is computed by the rate of change in velocity. We
lso computed the relative time at which the minimum or maximum
ccurred with respect to the total duration. 

.2. Two-part analyses of the extracted features 

Two analyses were conducted. Part 1 of our analyses was a discrimi-
ant approach where we formulated a series of tone classification prob-
ems to allow us to directly relate which features best characterize each
one. With the most relevant features identified in Part 1, we then per-
ormed post-hoc analyses to examine the individual features on a per
one basis in Part 2. 

The next section provides technical details on the discriminant anal-
sis approach adopted for the tone classifications. 

.3. Analysis of the associations between features and tone class via a 

iscriminant approach 

Given our dataset of video tokens (each of which was represented
y a set of features and a label corresponding to tone class), we used a
ne-versus-all (OVA) approach where we trained a random forest (RF)
lassifier to discriminate each tone from the other three tones using fea-
ures extracted from the videos of the speaker’s utterances. 
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Table 1 

The set of features used to represent each video token. ROI is region of interest. Please refer to text for details. 

ROI Index Category How this feature is computed 

Head 1 Distance Maximum displacement of the head while head-raising from its starting position 

Head 2 Distance Maximum displacement of the head while head-lowering from its starting position 

Head 3 Distance Average distance head moved during the utterance 

Head 4 Distance Total distance traveled by head during the utterance 

Eyebrow 5 Distance Maximum displacement of the eyebrow keypoint from its starting position 

Eyebrow 6 Distance Maximum displacement of the eyebrow while eyebrow-lowering from its starting position 

Eyebrow 7 Distance Average distance eyebrow moved during utterance 

Eyebrow 8 Distance Total distance eyebrow moved during the utterance 

Lips 9 Distance Maximum lip-opening distance 

Lips 10 Distance Maximum lip-closing distance 

Lips 11 Distance Average distance lips moved during utterance 

Lips 12 Distance Total distance lip moved during the utterance 

Head 13 Time The relative time at which the displacement of the head while head-raising was maximum 

Head 14 Time The relative time at which the displacement of the head while head-lowering was maximum 

Head 15 Time The relative time at which the head velocity was maximum during head-raising 

Head 16 Time The relative time at which the head velocity was maximum during head-lowering 

Eyebrow 17 Time The relative time at which the displacement of the eyebrow while eyebrow-raising was maximum 

Eyebrow 18 Time The relative time at which the displacement of the eyebrow while eyebrow-lowering was maximum 

Eyebrow 19 Time The relative time at which the eyebrow keypoint reached maximum velocity during eyebrow-raising 

Eyebrow 20 Time The relative time at which the eyebrow velocity during eyebrow-lowering was maximum 

Lips 21 Time The relative time at which the amount of lip-opening reached maximum 

Lips 22 Time The relative time at which the amount of lip-closing reached maximum 

Lips 23 Time The relative time at which the lip velocity during lip-opening was maximum 

Lips 24 Time The relative time at which the lip velocity during lip-closing was maximum 

Head 25 Kinematic Maximum head velocity during head-raising 

Head 26 Kinematic Maximum head velocity during head-lowering 

Head 27 Kinematic Maximum absolute acceleration of the head 

Eyebrow 28 Kinematic Maximum eyebrow velocity during eyebrow-raising 

Eyebrow 29 Kinematic Maximum eyebrow velocity during eyebrow-lowering 

Eyebrow 30 Kinematic Maximum absolute acceleration of the eyebrow 

Lips 31 Kinematic Maximum lip velocity during lip opening 

Lips 32 Kinematic Maximum lip velocity during lip closing 

Lips 33 Kinematic Maximum absolute acceleration of the lips 

Fig. 3. (a) Schematic diagram showing the position and direction of movement of the 4 tracked points. The shadows near eyebrow/jaw/nose indicate motion. (b) 
A visual summary of the different features we extracted from the 4 tracked keypoints. POI is position of interest. Please see main text for details. 
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Our choice of random forest as the classifier was made based on the
ork by Paul et al. (2015) . Briefly, RF operates by training and subse-
uently deploying an ensemble of t simple decision trees, each of which
redicts (or outputs) a class label given an input pool of features such
hat the final class label is obtained by computing the mode of the class
abel predictions obtained from each tree. Randomness is injected by
raining each tree with a random subset of samples and another random
ubset of features. 

RF has been used in many binary and multi-class classification prob-
ems such as emotion recognition ( Noroozi et al., 2017 ). One of RF’s
52 
ey advantages over its counterparts is its inherent ability to provide
 ranking of importance of each input feature for a given classification
ask. Furthermore, Paul et al. (2015) recently proposed extending anal-
sis of feature importance derived from RF-training by evaluating the
ignificance of each feature towards the classification accuracy. In sum-
ary, their method works by using out-of-bag samples to measure the

mpact of each feature on the classification accuracy after RF-training.
aul et al. (2015) showed that using only a subset of features that are
ignificant led to substantial improvement over using the original fea-
ure set. This method is thus particularly suitable for the present study
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2 Note that Paul’s importance value 𝐽 𝜒2 and Breiman’s importance value ( J a ) 
are highly correlated and functionally similar as shown in Paul et al. (2015) . 
For simplicity, we thus chose and plotted J a as it is more familiar to the com- 
putational/statistics community than 𝐽 𝜒2 , which is also inversely proportional 
to common intuition of importance (i.e. lower probability value implies greater 
importance). 
s it enables us to examine both importance ranking and the significance
f each feature to guide our understanding of which features are most
epresentative of each tone. We next outline the procedure described in
aul et al. (2015) to compute the importance measure of each feature
hat effectively determines the statistical significance of each feature. 

.3.1. Statistical significance of feature 

After training the RF classifier, each feature dimension was randomly
ermuted across the out-of-bag samples. Changes in the distribution of
he class votes obtained by permuting a particular feature were then
easured via a contingency table that summarizes the classification and
isclassification rates (i.e. True Positive, True Negative, False Positive

nd False Negative) when the feature in question is permuted (or not).
his procedure is repeated multiple times. A set of p -values were then
btained by running Pearson’s 𝜒2 test of independence on these mea-
ures. After corrections for multiple comparisons, features with adjusted
 -values that are below the standard confidence level ( p < 0.05) are
enceforth regarded as “significant ”. 

Note that using the dataset with class labels of 4 tones as OVA classi-
cation (2 classes) in the same way as for a multi-class problem naturally

eads to imbalanced classes. To address this, we employed bootstrapped
ampling ( Liu et al., 2009 ) so that the number of random samples r
rawn for each class is the same. This step was repeated N times to
liminate bias towards any class. 

In our experiments, we set r = 500 and set N empirically to 300 (we
id not find any difference in classification performance when N > 100).
e also employed t = 500 random trees for each tone classification task.

astly, 90% of the samples in the entire dataset was used for training
nd 10% was used for testing in each of the sampling iterations. 

. Results 

We present the results of the analyses that employed an RF classifier
o distinguish each tone from the other tones using extracted features.
hese analyses help us understand which extracted features are most
epresentative for each tone. 

.1. Measurements in physical units and the corresponding normalized 

ata in pixels 

The feature analysis in this study was performed on pixel data of the
aptured video. In order to relate the extracted measurements from pix-
ls to physical units (i.e. mm), we thus measured the physical head sizes
f two randomly chosen speakers (1 male, 1 female) to approximate the
xtracted measurements in physical units. A summary of the obtained
eature measurements in both physical units and in pixels is listed in
able A.1 . From this table, we show for example that the average head
isplacement during head lowering for the male speaker is 0.604 mm
1.817 pixels) while that of the female speaker is 1.328 mm (3.650 pix-
ls), and that the maximum eyebrow velocity during eyebrow raising
or the male is 0.290 mm/s (0.872 pixels/s) while that for the female is
.516 mm/s (1.418 pixels/s). 

.2. Tone classification accuracy using the extracted features 

For classification of Tone 1, average accuracy achieved by a
rained random forest classifier as computed over 1000 iterations was
.6317 ± 0 . 1021 when all features were used on the test set. When only
sing a subset of the extracted features selected using Paul’s method
 Paul et al., 2015 ), accuracy improved to 0.6497 ± 0 . 0958. Similarly,
verage classification accuracy improved from 0.5789 ± 0 . 0927 to
.6063 ± 0 . 0929 for Tone 2 classification, from 0.6822 ± 0 . 1376 to
.6892 ± 0 . 1302 for Tone 3 classification, and from 0.5987 ± 0 . 0784 to
.6311 ± 0 . 0831 for Tone 4 classification. 

Accuracy rates of each tone classification task were computed under
 settings: (1) using all the features; (2) using K features that are sig-
ificant as determined by Paul’s approach (i.e., by applying a threshold
53 
n 𝐽 𝜒2 ); (3) using the top K features as ranked by Breiman’s importance
easure ( J a ). Using approach 2 (Paul’s approach; only the features that
ere determined to be significant) yielded better performance for all

ones as compared to using approach 1 (using all features). Also, select-
ng the K significant features generally led to better performance over
electing the top K features based on Breiman’s importance weighting,
hereby supporting the use of the analysis approach of Paul et al. (2015) .

.3. Most relevant features per tone 

By computing and applying a threshold on 𝐽 𝜒2 ( Paul et al., 2015 ),
e found that 10 features were significant for Tone 1 (see Fig. 4 (b)),
 features were significant for Tone 2 (see Fig. 5 (b)), 15 features were
ignificant for Tone 3 (see Fig. 6 (b)), and 8 features were significant for
one 4 (see Fig. 8 (b)). The more features are selected, the better the
ccuracy, ranging from 5 features (61%) to 15 features (69%). 

Feature patterns observed for each tone when they were analyzed
n the context of separate tone classification problems (see Section 3.3 )
ere obtained. We first examine the importance ranking of the signif-

cant features for each tone classification task and then examine the
ignificant features individually. 

.3.1. Tone 1 

For Tone 1, we plotted the importance weight 2 of the 10 signif-
cant features for Tone 1 classification ( Fig. 4 (b)). From this figure,
ne can see that most of the significant features were those that de-
cribe head and eyebrow movements. These, in the order of impor-
ance weight, include: (i) maximum head-raising velocity; (ii) relative
ime when eyebrow-lowering distance is maximum; (iii) relative time
hen lips opening velocity is maximum; (iv) maximum lips-opening
istance; (v) maximum head-lowering distance; (vi) relative time when
ead-lowering distance is maximum; (vii) relative time when eyebrow-
owering velocity is maximum; (viii) relative time when eyebrow-raising
elocity is maximum; (ix) maximum eyebrow-lowering velocity; and (x)
elative time when head-raising velocity is maximum. 

We next examined the discriminatory power of each of these 10 sig-
ificant features by examining their mean values pooled over each tone
lass. More specifically, for each tone, we compared its mean feature
alue with the mean of those computed from all other tones. Further,
e tested the significance of observed differences in the mean values
sing a student’s t -test. Prior to the t -test, we confirmed that the data
as normally distributed per Lilliefors test. Results of the comparisons
re given in Fig. 4 (c). Whenever the means between one tone and the
ther three tones differed significantly ( p < 0.05), we placed an asterisk
bove each bar. 

Tone 1 is generally produced with minimal head and eyebrow move-
ent compared to the other tones. Specifically, the maximum head-

aising velocity, head-lowering distance, and eyebrow-lowering velocity
xhibited by Tone 1 was smallest in value, reflecting that articulation of
his tone required either smaller movements or slower velocities. Exam-
ning the plots in Fig. 4 (c), one trend observed is that the times taken
y the head and eyebrow keypoints to reach maximum velocity, during
ead raising and during eyebrow raising, respectively, were the longest
or Tone 1, suggesting that the height of motion happened quite late
or this tone when compared to the other tones. Overall, we could see
hat these significant features that best discriminate Tone 1 from the
ther tones are related to the velocities of keypoints and the times (of
n event), and that Tone 1 generally involved lower mean values (i.e.
maller movements) for these features. 
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Fig. 4. (a) An example fundamental frequency contour for Tone 1. (b) Importance value of all the features determined to be significant for Tone 1 classification. (c) 
Comparisons of the group means of the 10 features that were significant for Tone 1 classification. 6 features were found to exhibit statistically significant differences 
between Tone 1 and all the others combined. A ∗ above a bar represents a p -value smaller than 0.05. 
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.3.2. Tone 2 

For Tone 2, only 5 of the 33 features extracted were significant. Their
eature importance rankings are given in Fig. 5 (b), including (i) maxi-
um eyebrow lowering distance; (ii) maximum eyebrow raising dis-

ance; (iii) maximum head lowering distance; (iv) relative time when
54 
ead raising distance was maximum; and (v) relative time when eye-
row raising velocity was maximum. None of the significant features
ere derived from the lip regions. 

Feature comparisons of Tone 2 against the other tones were con-
ucted using t-tests. As shown in Fig. 5 (c), Tone 2 exhibits longest time
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Fig. 5. (a) An example fundamental frequency contour for Tone 2. (b) Importance value of all the features determined to be significant for Tone 2 classification. (c) 
Comparisons of the group means of the 5 features that were significant for Tone 2 classification. One feature was found to exhibit statistically significant differences 
between Tone 2 and all the others combined. A ∗ above a bar represents a p -value smaller than 0.05. 
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o reach maximum head raising distance as compared to the other tones.
his suggests that the feature maxima happened at the later part of the
one. Additionally, we observed larger eyebrow raising in the later part
f the motion, albeit a t -test did not reveal statistical significance. The
arger rising motion in the later part corresponds to the rising contour
f Tone 2. 
55 
.3.3. Tone 3 

We next turn to Tone 3, which is the most dynamic of all four Man-
arin tones. Compared to the other tones, many more features were
ound to be significant for the Tone 3 classification. Fig. 6 (b) ranks
he significant features by their measured importance as done simi-
arly before for Tones 1 and 2. These include: (i) maximum eyebrow-
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Fig. 6. (a) An example fundamental frequency contour for Tone 3. (b) Importance value of all the features determined to be significant for Tone 3 classification. 
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owering distance; (ii) relative time when eyebrow-lowering distance
s maximum; (iii) relative time when head-lowering is maximum; (iv)
aximum eyebrow-raising velocity; (v) maximum head-lowering dis-

ance; (vi) relative time when eyebrow-raising velocity is maximum;
vii) relative time when head-raising velocity is maximum; (viii) relative
ime when head-lowering velocity is maximum; (ix) maximum eyebrow-
owering velocity; (x) relative time when eyebrow-lowering velocity
s maximum; (xi) maximum eyebrow-raising distance; (xii) maximum
ead-raising distance; (xiii) average head distance; (xiv) average eye-
row distance; and (xv) relative time when lips-closing velocity is max-
mum. From this figure, one could generally see that features extracted
rom the eyebrow and the head had high feature importance. In contrast,
here was only 1 feature extracted from the lips that had high feature
mportance. 

Fig. 7 (a) plots the mean values of the top ten significant features for
he Tone 3 classification task where the feature value in Tone 3 was
argest when compared to the values of the other tones for the same
eatures, with an asterisk showing a significant difference from t -test at
 < 0.05. In summary, Tone 3 has the greatest amount of movement for
ead-raising, head-lowering, eyebrow-raising and eyebrow lowering as
he distance traveled by the corresponding keypoint was the largest. The
verage distance traveled by head and eyebrow were also the largest.
56 
dditionally, the velocity for eyebrow-raising and eyebrow-lowering
as the largest for this tone. The times taken for the head-lowering
elocity and the eyebrow-lowering velocity to reach maximum values
ere also the largest for this tone when compared to all other tones. 

Fig. 7 (b) plots the mean values of the five significant features where
he value in Tone 3 was the smallest when compared to the values of the
ther tones. We can see that the time taken for the lips-closing velocity to
each maximum value was also shortest for this tone. Additionally, the
imes taken for the head-raising and eyebrow-raising velocity to reach
aximum were also shortest for Tone 3. These last two observations

uggest that the head and eyebrow movements co-vary. 
Collectively, the shorter mean times of maximum head-lowering dis-

ance and eyebrow-lowering distance suggest that the aforementioned
vents occurred fairly early in the tone production while the velocity
eaks of downward movements of keypoints occurred later, close to the
nd of tone production. These patterns align with the dipping nature of
one 3. 

.3.4. Tone 4 

Lastly, we repeated the above analyses for Tone 4. Fig. 8 (b) ranks
he other significant features relative to this feature. These are: (i) rel-
tive time when head-lowering is maximum; (ii) relative time when



S. Garg, G. Hamarneh and A. Jongman et al. Speech Communication 113 (2019) 47–62 

Fig. 7. (a) Comparisons of the group means of the 10 features whose feature value was larger in Tone 3 as compared to other tones and deemed significant for Tone 
3 classification. Note that 9 features were found to exhibit statistically significant differences between Tone 3 and all the others combined. (b) Comparisons of the 
group means of the 5 features whose values were smallest for Tone 3 and deemed significant for Tone 3 classification. Note that 3 features were found to exhibit 
statistically significant differences between Tone 3 and all the others combined. A ∗ above a bar represents a p -value smaller than 0.05. 

57 
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Fig. 8. (a) An example fundamental frequency contour for Tone 4. (b) Importance value of all the features determined to be significant for Tone 4 classification. (c) 
Comparisons of the group means of the 8 features that were significant for Tone 4 classification. 5 features were found to exhibit statistically significant differences 
between Tone 4 and all the others combined. A ∗ above a bar represents a p -value smaller than 0.05. 
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ead-raising velocity is maximum; (iii) total head distance; (iv) relative
ime when lips-opening velocity is maximum; (v) relative time when
yebrow-lowering distance is maximum; (vi) relative time when lips-
pening distance is maximum; (vii) relative time when lips-closing ve-
ocity is maximum; and (viii) relative time when lips-closing distance
s maximum. The most important significant feature for this tone was
58 
he relative time when head lowering was largest. Overall, most of the
eatures that were found to be significant were time-based. 

Fig. 8 (c) compares the mean values of each significant feature for
one 4 relative to those for the other tones, based on the t -test results.
everal observations can be seen. Firstly, the relative time for the ve-
ocity of lip-closing to reach maximum value was largest for Tone 4.
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econdly, the relative time required by the head keypoint to reach max-
mum lowering was largest for Tone 4. This suggests that the lower-
ng movement occurred in the later part of the vowel pronunciation.
hirdly, the relative time it took for the head-raising keypoints to reach
aximum velocity had the second smallest value (Tone 3 had the small-

st value). Three of these five significant features relate to those from the
ips regions, while the remaining two are related to the head. Hence, this
s the only other tone that seems to be characterized well by lip-related
eatures beside Tone 1. Overall, the relative times it took for critical
vents to happen during lowering movements were the largest for Tone
. 

. Discussion 

.1. Technical contribution 

This study used a synergistic pipeline of LBP-based cascade classi-
ers and optical-flow algorithms ( Beauchemin et al. 1995 ) to carefully
rack facial features such as head, eyebrow, and lips. In terms of motion
racking and feature extraction, our image analysis algorithms freed us
rom the use of physical markers that had various limitations as ex-
lained in Section 1.3 , albeit it was a commonly adopted solution in
everal linguistic studies e.g., Kim et al., 2014a; Attina et al., 2010;
ehia et al., 2002 . In terms of accuracy and precision, smooth tracking
f motion trajectories allowed us to robustly measure distance, time, and
inematic features from each of the keypoints. This contrasts with the
se of a generic face classifier that was employed in our previous work
Tang et al., 2015) . Analyses of these additional feature dimensions al-
owed us to extend our findings from existing literature pertaining to
otion- and velocity- related tone characteristics. 

In terms of analyses, tones were compared using a 2-step discrim-
nant analysis approach based on RF and statistical analysis proposed
y Paul et al. (2015) to evaluate each feature importance in discrimi-
ating each tone from all other tones in this work. Our 2-step approach
ided us to systematically identify 4 subsets of features, each of which
s critical in characterizing a tone, thereby allowing us to relate our re-
ults to previous findings (e.g., Attina et al., 2010; Munhall et al., 2004;
carborough et al., 2009; Yehia et al., 2002 ) and draw conclusions from
ew findings for each tone with confidence built on machine learning
lgorithms and statistical basis. Our results show overall alignment of
ead and eyebrow movements with the tone contour. 

In summary, our extended approach adopted in the current study fa-
ilitates identification of visual articulatory features characterizing each
one, as discussed below. 

.2. Features characterizing each tone 

.2.1. Tone 1 

Firstly, as presented in Section 4.3 , we found that Tone 1 has the
mallest amount of head-lowering displacement as well as the lowest
elocities in head-raising and eyebrow-lowering as compared to other
ones. These relatively small movements observed for Tone 1 may be
xplained by its small tone variation in F0, which would be consistent
ith two sets of prior works that showed that (1) head movements are

arger in prosodic constituents with a larger amount of variance in F0
 Munhall et al., 2004; Yehia et al., 2002 ); and (2) larger eyebrow dis-
lacements are associated with focused words that involve greater F0
ariation ( Kim et al., 2014a ). 

Additionally, our result on the kinematic differences between Tone
 and the other tones is an observation that has not been reported in
revious work. For instance, we observed that the time taken by the
yebrow to reach maximum velocity during eyebrow raising was the
ongest for Tone 1 when compared to all other tones. This echoes the
ack of fluctuations in the contour of this tone due to its level nature.
urthermore, our analysis also suggests that small head and eyebrow
ovements maybe coordinated and co-vary. 
59 
.2.2. Tone 2 

Tone 2 exhibits the longest time to reach maximum head raising dis-
ance relative to the other tones. Furthermore, we observed a trend of
arger eyebrow raising in the later part of the motion. These movements
onsistently correspond to the rising F0 contour for this tone. Similar
bservations on F0 and eyebrow were also reported for other pitch-
elated prosodic variations ( Cavé et al., 1996 ; Dohen et al., 2006 and
carborough et al., 2009 ). For example, as discussed previously, Cavé
t al. (1996) and Cavé et al. (2002) reported a significant link be-
ween eyebrow movements and F0 and also showed that the rising-
alling F0 curve was similar in shape to the eyebrow movement curve;
ohen et al. (2006) found a relationship between eyebrow motion (ris-

ng) and the production of prosodic focus for three out of the five French
peakers; and Scarborough et al. (2009) reported that their speakers
aised an eyebrow on almost all stressed words. 

Our result of the link between Tone 2 and kinematic features such as
he time when eyebrow-raising velocity was maximum also finds sup-
ort in previous studies on prosody. As Scarborough et al. (2009) had
eported that displacement-based and velocity-based measures were
ighly correlated, the present finding that Tone 2’s rising velocity hap-
ened near the end of the pronunciation was expected, as it is a rising
one. 

.2.3. Tone 3 

Total distance travelled by a keypoint during the utterance of a tone
s an indirect measure of the duration of the utterance. Hence, the larger
he total distance, the longer is the duration of the utterance. For Tone 3,
otal head distance was largest, suggesting that it is a longer tone which
s consistent with what is reported in the literature (e.g., Attina et al.,
010 ). 

Further, Tone 3 is known to be the most dynamic tone in terms of F0
ariation. Munhall et al. (2004) and Yehia et al. (2002) observed that
he head movements are larger in prosodic constituents with a larger
mount of variance in F0. These observations are consistent with our
ndings of larger movements seen in the head and eyebrow for Tone 3
s compared to the other tones. 

However, Attina et al. (2010) found lip-closing and lip-raising to
e significantly negatively correlated with the F0 contour of Tone 3,
hile in our analysis none of the features related to lips showed up as

ignificant. 
Another set of new observations made for Tone 3 is that we found

ertain dynamic movements of head and eyebrow such as eyebrow-
aising and eyebrow-lowering velocity to be largest for Tone 3 as it is
he most dynamic tone with larger variations. Also, the time when head-
nd eyebrow- lowering velocity is maximum is longest for Tone 3 and
he time when head- and eyebrow- raising velocity is maximum is short-
st for Tone 3. This suggests that the raising velocity was larger in the
eginning of the pronunciation and the lowering velocity was larger at
he end of the pronunciation compared to the other tones. 

.2.4. Tone 4 

For Tone 4, features related to lip-movement seem to play an impor-
ant role in differentiating this tone from the other tones. Previously,
ttina et al. (2010) have reported that lip-closing is positively corre-

ated with F0 in Tone 4. Our analysis also shows two lip-closing fea-
ures significant in differentiating Tone 4 from the other three tones,
.e., times when distance and velocity were largest during lip-closing.
urther, Huron et al. (2013) reported that the average F0 correlated
ositively with eyebrow position, with higher vocal pitch associated
ith higher eyebrow placement. Munhall et al. (2004) reported a simi-

ar correlation between head movement and F0 contour. These patterns
re consistent with our findings: it took longer for head-lowering dis-
ance to reach maximum, suggesting head-lowering happened later in
he tone. Since this is a falling tone, the head-lowering followed the F0
ontour. 
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In addition, our analyses found several new features that are charac-
eristic of Tone 4: the time when head-raising velocity was largest was
ongest for this tone. This could reflect the head quickly coming to a
esting position after the head lowering movement of the tone. More-
ver, the time when lip-opening distance was largest was also longest,
uggesting the movements happened later in the tone. 

.2.5. Summary of characteristic features 

In summary, the current results show three general trends. Firstly,
he spatial and temporal dynamics of the head, eyebrow and lip fea-
ures generally followed the pitch contour. For example, head lowering
ccurred close to the end of the articulation of Tone 4, which agrees
ith the falling pitch contour of Tone 4. Likewise, Tone 2 exhibits a

ong time to reach maximum eyebrow raising, aligning with the ris-
ng nature of this tone. Secondly, head and eyebrow features covary
n their movement trajectories. For instance, temporal and kinematic
eatures of head and eyebrow movements covary for Tone 3. Lastly,
n terms of discriminatory ability of the features, we observed that
oth displacement-based and kinematic (especially velocity-based) fea-
ures were powerful measures in guiding the discrimination of each
one. 

.3. General discussion 

Findings of the current study provide new insights into defining the
ature of visual tonal cues and determining their linguistic relevance.
s discussed earlier, unlike phonemes, the production of lexical tones

s driven by laryngeal activities independent of vocal tract configura-
ions ( Howie 1976; Lehiste 1970; Yip 2002 ). It is thus an open question
hether facial and mouth movements in tone production are articu-

atorily required cues and how they are used to signal tonal category
istinctions. 

The current results show that some of the visual tonal cues may in-
eed be articulatorily motivated, arguably due to movements of the
aryngeal muscles that control the vocal folds when pitch is varied
 Burnham et al., 2015; Yehia et al., 2002 ). For instance, the signifi-
antly large head-lowering and head raising movements for Tone 3 (as-
ociated with the dipping nature of this tone) may find support from
he previous claim that head lowering or raising can be triggered by
he reduced or tightened vocal folds, resulting in low- or high-pitched
ones ( Moisik et al., 2014; Smith et al., 2012 ). However, such a link
o laryngeal activities cannot account for the current results of eye-
row and lip movements associated with the production of specific
ones. 

A more cogent explanation lies in the visuospatial-acoustic link be-
ween articulatory movements and pitch trajectories, showing that head,
yebrow, and lip movements in terms of spatial and temporal changes
n distance, direction, velocity, and timing are aligned with acoustic fea-
ures of tonal changes in height, contour, and duration. This cross-modal
ssociation between spatial and pitch changes in tone is in line with
he previous claim that pitch is audio-spatial in representation ( Connell
t al., 2013; Hannah et al., 2017 ), in that head and facial movements ac-
ompanied by tone productions provide spatial equivalence to pitch tra-
ectories. For example, an elevation in space (e.g., hand or eyebrow rais-
ng) is generally found to correlate with an elevation in pitch ( Connell
t al., 2013; Huron et al., 2013; Küssner et al., 2014 ). 

While such cross-modal spatial-acoustic binding has been claimed to
xist universally in the human sensory-motor system ( Barsalou 2008;
orghi et al., 2013; Hannah et al., 2017 ), the current results further
60 
uggest linguistically meaningful associations of the above-mentioned
isual cues with tone articulation. This is evidenced by tone-specific
lignments between head, eyebrow, and lip movements and the pitch
rajectories characterizing different tones. In particular, the downward
r upward head and eyebrow movements follow the dipping (Tone 3)
nd rising (Tone 2) pitch trajectories, the timing and dynamicity of lip
losing movements are associated with the falling pitch trajectory of
one 4, and minimal movement is characteristic of Tone 1, the level tone
ith a lack of pitch change. These patterns demonstrate how specific vi-

ual cues are used in characterizing individual tones, making each tone
istinct from the other contrasting tones. Thus, findings from the current
tudy indicate linguistically salient, category-defining tonal articulatory
ues, suggesting language-specific mechanisms underlying cross-modal
one production, above and beyond a general language-universal sys-
em. 

. Concluding remarks 

The current finding of the linguistic relevance of visual tonal cues
as significant implications for tone perception. It has been claimed
hat patterns of visual cues can be used to make specific predictions
or perception. For example, Scarborough et al. (2009) predicted more
ccurate perception for stress contrasts with more distinctive visual fea-
ures and better perception for more prominent visual features. Extend-
ng these predictions to the present results, Tone 3, which contains a
reater number of distinctive visual features and more prominent visual
eatures than Tone 2, should be more accurately perceived than Tone 2.
iven that little research has mapped specific visual tonal cues to tone
erception ( Burnham et al., 2007; Chen et al., 2011; Mixdorff et al.,
005 ), further evidence from tone perception is needed to determine
ow the visual tonal cues are used to facilitate perception of categorical
onal distinctions, and the extent to which perception is based on the
inguistic relevance of these cues. 

Understanding the visual correlates of tone production and percep-
ion not only advances research on cross-modal integration of sensory-
otor information in speech processing, but also has important applica-

ions for the development of effective tools for tone language learning,
isual aids for hearing-impaired conditions, audio-visual tonal speech
ynthesis for virtual communication, as well as speech simulation tools
hat will amplify the identified tone-specific visual articulatory cues to
id speech perception in noisy environments. 
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A
ppendix A. EXTRACTED FEATURES 

Table A.1 . 
Table A.1 

Feature measurements obtained in mm and in pixels (px). 

Index Feature Male mean Std 

1 Maximum displacement of the head while 

head-raising from its starting position 

1 . 58 mm 1 . 04 

2 Maximum displacement of the head while 

head-lowering from its starting position 

− 0 . 60 mm 0 . 63 

3 Average distance head moved during the utterance 0 . 54 mm 0 . 39 

4 Total distance traveled by head during the utterance 59 . 70 mm 42 . 27 

5 Maximum displacement of the eyebrow keypoint 

from its starting position 

1 . 24 mm 0 . 82 

6 Maximum displacement of the eyebrow while 

eyebrow-lowering from its starting position 

− 0 . 52 mm 0 . 51 

7 Average distance eyebrow moved during utterance 0 . 41 mm 0 . 30 

8 Total distance eyebrow moved during the utterance 45.175 mm 32 . 05 

9 Maximum lip-opening distance 29 . 08 mm 2 . 35 

10 Maximum lip-closing distance 20 . 76 mm 1 . 25 

11 Average distance lips moved during utterance 22 . 85 mm 1 . 32 

12 Total distance lip moved during the utterance 2520.6 mm 210 . 07 

13 The relative time at which the displacement of the 

head while head-raising was maximum 

0 . 37 0 . 15 

14 The relative time at which the displacement of the 

head while head-lowering was maximum 

0 . 45 0 . 31 

15 The relative time at which the head velocity was 

maximum during head-raising 

0 . 40 0 . 14 

16 The relative time at which the head velocity was 

maximum during head-lowering 

0 . 33 0 . 15 

17 The relative time at which the displacement of the 

eyebrow while eyebrow-raising was maximum 

0 . 37 0 . 17 

18 The relative time at which the displacement of the 

eyebrow while eyebrow-lowering was maximum 

0 . 47 0 . 30 

19 The relative time at which the eyebrow key-point 

reached maximum velocity during eyebrow-raising 

0 . 43 0 . 19 

20 The relative time at which the eyebrow velocity 

during eyebrow-lowering was maximum 

0 . 36 0 . 16 

21 The relative time when the amount of lipopening 

reached maximum 

0 . 34 0 . 12 

22 The relative time when the amount of lipclosing 

reached maximum 

0 . 47 0 . 30 

23 The relative time at which the lip velocity during 

lip-opening was maximum 

0 . 26 0 . 10 

24 The relative time at which the lip velocity during 

lip-closing was maximum 

0 . 45 0 . 12 

25 Maximum head velocity during head-raising 0 . 32 mm / s 0 . 15 

26 Maximum head velocity during headlowering − 0 . 36 mm / s 0 . 16 

27 Maximum absolute acceleration of the head 0 . 23mm 

2 / s 0 . 10 

28 Maximum eyebrow velocity during eyebrowraising 0 . 29 mm / s 0 . 14 

29 Maximum eyebrow velocity during eyebrowlowering − 0 . 28 mm / s 0 . 14 

30 Maximum absolute acceleration of the eyebrow 0 . 19 mm 

2 / s 0 . 09 

31 Maximum lip velocity during lip opening 3 . 12 mm / s 1 . 07 

32 Maximum lip velocity during lip closing − 0 . 87 mm / s 0 . 30 

33 Maximum absolute acceleration of the lips 2 . 14 mm 

2 / s 0 . 84 

61 
Mean Std Female mean Std Mean Std 

4 . 75 px 3 . 13 5 . 88 mm 3 . 46 16 . 14 px 9 . 43 

− 

1 . 82 px 

1 . 88 − 1 . 33 mm 1 . 79 − 3 . 65 px 4 . 90 

1 . 63 px 1 . 16 1 . 71 mm 1 . 09 4 . 68 px 2 . 95 

179 . 57 px 125 . 12 213 . 67 mm 140 . 37 586 . 16 px 381 . 47 

3 . 72 px 2 . 45 4 . 10 mm 2 . 46 11 . 24 px 6 . 71 

− 1 . 57 px 1 . 53 − 1 . 09 mm 1 . 38 − 3 . 00 px 3 . 79 

1 . 23 px 0 . 88 1 . 23 mm 0 . 78 3 . 38 px 2 . 13 

135 . 73 px 94 . 21 154.8 mm 

102 

. 56 424 . 59 px 278 . 76 

62 . 55 px 3 . 89 31 . 39 mm 3 . 12 62 . 87 px 6 . 66 

87 . 61 px 7 . 21 22 . 81 mm 2 . 32 86 . 52 px 8 . 83 

68 . 83 px 4 . 08 24 . 94 mm 2 . 29 68 . 76 px 6 . 69 

7593 . 90 px 653 . 33 3115.3 mm 469 . 43 8587.1 px 1315 . 60 

0 . 37 0 . 15 0 . 28 0 . 11 0 . 28 0 . 11 

0 . 45 0 . 31 0 . 35 0 . 29 0 . 35 0 . 29 

0 . 40 0 . 14 0 . 33 0 . 11 0 . 33 0 . 11 

0 . 33 0 . 15 0 . 24 0 . 13 0 . 24 0 . 13 

0 . 37 0 . 17 0 . 29 0 . 13 0 . 29 0 . 13 

0 . 47 0 . 30 0 . 33 0 . 27 0 . 33 0 . 27 

0 . 43 0 . 19 0 . 33 0 . 10 0 . 33 0 . 10 

0 . 36 0 . 16 0 . 25 0 . 13 0 . 25 0 . 13 

0 . 34 0 . 12 0 . 26 0 . 12 0 . 26 0 . 12 

0 . 47 0 . 30 0 . 42 0 . 33 0 . 42 0 . 33 

0 . 26 0 . 10 0 . 19 0 . 09 0 . 19 0 . 09 

0 . 45 0 . 12 0 . 37 0 . 12 0 . 37 0 . 12 

0 . 98 px / s 0 . 46 0 . 67 mm / s 0 . 40 1 . 83 px / s 1 . 08 

− 1 . 07 px / s 0 . 48 − 0 . 83 mm / s 0 . 46 − 2 . 28 px / s 1 . 24 

0 . 71 px 2 / s 0 . 29 0 . 28mm 

2 / s 0 . 11 0 . 76 px 2 / s 0 . 30 

0 . 87 px / s 0 . 42 0 . 52 mm / s 0 . 30 1 . 42 px / s 0 . 81 

− 0 . 84 px / s 0 . 42 − 0 . 61 mm / s 0 . 33 − 1 . 68 px / s 0 . 90 

0 . 58 px 2 / s 0 . 26 0 . 23mm 

2 / s 0 . 08 0 . 63 px 2 / s 0 . 22 

9 . 39 px / s 3 . 20 1 . 67 mm / s 0 . 59 4 . 61 px / s 1 . 64 

− 2 . 62 px / s 0 . 90 − 0 . 91 mm / s 0 . 30 − 2 . 49 px / s 0 . 81 

6 . 44 px 2 / s 2 . 53 0 . 84 mm 

2 / s 0 . 48 2 . 33 px 2 / s 1 . 33 
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