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Visual facial information, particularly hyperarticulated lip movements in clear
speech, has been shown to benefit segmental speech perception. Little research
has focused on prosody, such as lexical tone, presumably because production
of prosody primarily involves laryngeal activities not necessarily distinguishable
through visible articulatory movements. However, there is evidence that head,
eyebrow, and lip movements correlate with production of pitch-related variations.
One subsequent question is whether such visual cues are linguistically meaningful.
In this study, we compare movements of the head, eyebrows and lips
associated with plain (conversational) vs. clear speech styles of Mandarin tone
articulation to examine the extent to which clear-speech modifications involve
signal-based overall exaggerated facial movements or code-based enhancement
of linguistically relevant articulatory movements. Applying computer-vision
techniques to recorded speech, visible movements of the frontal face were
tracked and measured for 20 native Mandarin speakers speaking in two speech
styles: plain and clear. Thirty-three head, eyebrow and lip movement features
based on distance, time, and kinematics were extracted from each individual
tone word. A random forest classifier was used to identify the important features
that di�erentiate the two styles across tones and for each tone. Mixed-e�ects
models were then performed to determine the features that were significantly
di�erent between the two styles. Overall, for all the four Mandarin tones, we
found longer duration and greater movements of the head, eyebrows, and lips
in clear speech than in plain speech. Additionally, across tones, the maximum
movement happened relatively earlier in clear than plain speech. Although limited
evidence of tone-specific modifications was also observed, the cues involved
overlap with signal-based changes. These findings suggest that visual facial tonal
modifications for clear speech primarily adopt signal-based general emphatic cues
that strengthen signal saliency.

KEYWORDS

speech style, Mandarin, facial cues, computer vision, video processing, Mandarin tones

1. Introduction

It is well known that having both audio and video information in a noisy
environment, or when talking with non-native speakers or cochlear implant users
can help with speech perception and intelligibility (e.g., Sumby and Pollack,
1954; Desai et al., 2008; Wang et al., 2008). In such challenging listening
contexts, speakers tend to use a clear, hyperarticulated speech style (relative to
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plain, conversational style)1 with exaggerated acoustic features such
as increased voice intensity, fundamental frequency (F0), duration,
and hyper-articulation with more extreme spectral features to help
speech intelligibility (Ferguson and Kewley-Port, 2002; Cooke and
Lu, 2010; 2007; Krause and Braida, 2004; Smiljanić and Bradlow,
2005; Lu and Cooke, 2008; Hazan and Baker, 2011; Kim and Davis,
2014; Smiljanić, 2021). In addition to enhanced audio features,
visual articulatory cues provided by speakers’ mouth movements
have been found to improve speech intelligibility (Perkell et al.,
2002; Traunmüller and Öhrström, 2007; Kim and Davis, 2014), and
perception of such visual cues can be further enhanced in clear
speech (Gagné et al., 1994, 2002; Helfer, 1997; Lander and Capek,
2013; Van Engen et al., 2014).

Whilemost clear-speech studies focus on speech segments, little
research has examined clear-speech effects on prosody (including
lexical tone), especially in the visual domain, presumably because
prosodic production does not rely on vocal tract configurations
and may less likely provide reliable visual speech cues. However,
there is evidence that head, jaw, neck, eyebrow, and lip movements
may convey visual information in prosodic tonal production and
perception (Burnham et al., 2001; Yehia et al., 2002; Munhall et al.,
2004; Chen andMassaro, 2008; Attina et al., 2010; Cvejic et al., 2010;
Swerts and Krahmer, 2010; Kim et al., 2014). Furthermore, research
by our team suggests such movements provide linguistically
meaningful cues to signal tonal category distinctions (Garg et al.,
2019).

These findings present an interesting case with respect to
how these cues are utilized in clear-speech tone modification.
On the basis of acoustic characteristics, clear speech has been
claimed to involve two levels of modifications (Bradlow and
Bent, 2002; Zhao and Jurafsky, 2009; Redmon et al., 2020),
namely, signal-based and code-based. Signal-based clear-speech
modifications involve changes across the entire speech signal
independent of specific sound features, resulting in enhancement
of overall signal saliency rather than distinctions of specific speech
sounds; e.g., longer duration across vowels (Leung et al., 2016)
or higher intensity across lexical tones (Tupper et al., 2021). In
contrast, code-based clear-speech changes involve sound-specific
modifications resulting in enhancement of phonemic contrasts;
e.g., increased F2 for front vowels and decreased F2 for back
vowels (Leung et al., 2016) or steeper downward F0 slope for
the falling tone (Tupper et al., 2021). Likewise, clear-speech
modifications of visual articulatory features may also involve
signal-based changes (e.g., greater mouth opening across vowels)
vs. code-based changes (e.g., greater horizontal lip stretching for
/i/ and greater lip rounding for /u/, Tang et al., 2015). Effective
clear-speech modifications must involve coordination of signal-
and code-based strategies to enhance as well as preserve phonemic

1 The use of the terms “clear (hyperarticulated) style” and “plain

(conversational) style” follows the convention in previous clear-speech

studies (e.g., Ferguson and Kewley-Port, 2002;Maniwa et al., 2008; Tang et al.,

2015; Smiljanić, 2021; Tupper et al., 2021). These two terms refer to the more

enunciated vs. normal speech styles, respectively, resulting from elicitation

procedures to instruct talkers to speak an utterance “normally” first in the

manner used in a plain, natural conversation, and then repeat it “clearly” with

the goal of improving intelligibility.

category distinctions (Moon and Lindblom, 1994; Ohala, 1995;
Smiljanić and Bradlow, 2009; Tupper et al., 2018; Smiljanić, 2021).
Such coordination may be challenging in cases where cues are less
definitive in serving code-based functions, as in the case of visual
articulatory correlates to lexical tone. As such, lexical tone provides
a unique platform for testing these clear-speech principles with
respect to the extent to which signal- and code-based visual cues
are adopted in visual articulatory clear-speech modifications.

In the present study, we examine how the visual tonal
cues identified in Garg et al. (2019) are enhanced in clear
speech in the production of Mandarin Chinese tones, using
state-of-the-art computer vision, image processing, and machine
learning techniques.

1.1. Background

1.1.1. Visual cues in clear speech production
Kinematic studies focusing on segmental articulatory features

of speech production show that speakers articulate in a more
exaggerated manner in adverse listening conditions, presumably
to be more intelligible to perceivers (e.g., Tasko and Greilick,
2010; Kim et al., 2011; Kim and Davis, 2014; Garnier et al.,
2018). For example, studies using an Optotrak system examined
articulatory movements of clear speech produced in noise and
in quiet by tracking the motion of face markers as speakers
produce English sentences (Kim et al., 2011; Kim and Davis,
2014). The results of these studies revealed increased movements
of the jaw and mouth in speech produced in noise (clear speech)
compared to that produced in quiet (plain speech). Similarly,
using electromagnetic articulography (EMA), Garnier et al. (2018)
examined articulatory movements in the production of French
CVC words in clear speech produced in noisy environments.
They found patterns of hyperarticulation in lip movements in
clear (relative to plain) speech, with greater contrasts in lip
aperture between low and high vowels, and in lip spreading
and protrusion between spread and rounded vowels. In another
EMA study, Šimko et al. (2016) examined the production of
Slovak syllables containing long and short vowels in noise,
allowing the comparison of clear-speech effects on segmental and
suprasegmental (durational) features. They found that overall,
hyperarticulated speech produced in noise was associated with
expansion of movement of the jaw, the lips and the tongue as well as
increased utterance duration. Furthermore, suprasegmental-level
(durational) modifications associated with jaw opening appeared
to be separate from segmental-level modifications associated with
lip movements. Studies have also examined tongue movements
in clear vs. plain speech production using a midsagittal X-ray
microbeam system to track tongue fleshpoints (Tasko and Greilick,
2010). Results revealed that, in clear relative to plain productions
of the word-internal diphthong /aI/, the tongue began in a lower
position at the onset of diphthong transition (i.e., lowered tongue
for /a/) and ended in a higher position at transition offset (i.e.,
higher tongue position for /I/), indicating that clear speech resulted
in significantly larger and longer movements of the tongue toward
the target of the vowel components.
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Recent research conducted by our team has developed an
approach using computerized facial detection and image processing
techniques to measure articulatory movements (Tang et al., 2015;
Garg et al., 2019). For example, in Tang et al. (2015), we
examined front- and side-view videos of speakers’ faces while
they articulated English words in clear vs. plain speech containing
vowels differing in visible articulatory features. The results revealed
significant plain-to-clear speech modifications with greater mouth
opening across vowels, as well as vowel-specific modifications
corresponding to the vowel-inherent articulatory features, with
greater horizontal lip stretch for front unrounded vowels (e.g., /i,
I/) and greater degree of lip rounding and protrusion for rounded
vowels (e.g., /u, 0/).

Taken together, both kinematic and video-based articulatory
studies consistently show hyper-articulation in clear speech, with
modifications being both signal-based and generic (e.g., increased
mouth opening) and code-based and segment-specific (e.g., greater
lip protrusion for rounded vowels).

1.1.2. Visual articulatory cues for tone
As discussed previously, although F0 information cannot be

directly triggered by vocal tract configurations, movements of
the head, jaw, neck, eyebrows, as well as lips have been found
to be associated with changes in prosody, including lexical tone
(Burnham et al., 2001, 2022; Yehia et al., 2002; Munhall et al.,
2004; Chen and Massaro, 2008; Attina et al., 2010; Swerts and
Krahmer, 2010; Kim et al., 2014). Further research has revealed
that facial movements (e.g., head, eyebrow, lip) in terms of
spatial and temporal changes in distance, direction, speed, and
timing can be aligned with acoustic features of tonal changes in
height, contour, and duration (Attina et al., 2010; Garg et al.,
2019).

For prosody in general, movements of the head have been
shown to be correlated with F0 changes. Specifically, greater
head movements are found in sentences with strong focus
(Swerts and Krahmer, 2010; Kim et al., 2014), in stressed
syllables (Scarborough et al., 2009), and in interrogative intonation
(Srinivasan and Massaro, 2003), suggesting that the magnitude
of head motion can be aligned with the amount of F0
variation. In addition to the head, eyebrow movements are
also claimed to be associated with prosodic articulation (Yehia
et al., 2002; Munhall et al., 2004; Swerts and Krahmer, 2010;
Kim and Davis, 2014). For example, focused, accented, and
stressed words in a sentence have been found to involve
larger vertical eyebrow displacement and higher peak velocity
of eyebrow movements (Scarborough et al., 2009; Flecha-García,
2010; Swerts and Krahmer, 2010; Kim et al., 2014), indicating that
eyebrow movements may be coordinated with F0 for prosodic
contrasts. However, it has been pointed out that the specific
connection to F0 changes in terms of height and direction is
not straightforward or invariably evident (Ishi et al., 2007; Reid
et al., 2015). Moreover, although mouth configurations typically
signal segmental rather than prosodic contrasts, there has been
evidence that lip movements such as lip opening and lowering
may be spatially and temporally aligned with prosodic variations

(Dohen and Loevenbruck, 2005; Dohen et al., 2006; Scarborough
et al., 2009). For example, using a facial-motion tracking system
with retro-reflectors attached to the face (Qualisys), Scarborough
et al. (2009) found lip movements to be larger for stressed than
unstressed syllables.

Attempts have also been made to identify visible facial cues
associated with lexical tone production. In particular, computer-
vision research from our team has found that spatial and temporal
changes in distance, direction, speed, and timing are related to
acoustic features of Mandarin tonal changes in height, contour,
and duration (Garg et al., 2019). From tracking head movements,
Garg et al. (2019) has revealed that Mandarin high-level tone
(Tone 1), which involves minimal F0 variation compared to the
other contour tones, exhibits minimal head movements and low
movement velocity. These patterns are consistent with previous
kinematic sensor-based results showing that head movements (e.g.,
nodding, tilting, rotation toward the back) are correlated with F0
changes in Cantonese tones (Burnham et al., 2006, 2022). Similar
to head movements, the spatial and temporal changes in eyebrow
motion also follow the trajectories of F0 height and contour in
Mandarin tones. Garg et al. (2019) shows that the magnitude of
eyebrow displacement along with its movement velocity is smaller
for the level tone as compared to the contour tones, for which
the eyebrow movements are aligned with the direction and timing
of the rising (Tone 2), dipping (Tone 3), and falling (Tone 4)
trajectories. The spatial and temporal events in tone production
may also coordinate to mouth movements. For example, compared
to the other tones, Tone 4 exhibits the longest time to reach
the maximum velocity of lip closing, accompanied by the longest
time for the head and the eyebrows to reach maximum lowering,
suggesting later lowering movement corresponding to the falling
F0 trajectory of this tone (Garg et al., 2019). Findings from sensor-
based studies also corroborate a general correlation between lip
movements and F0, with lip raising movements corresponding to
the high F0 nature of Tone 1 and lip protrusion relating to the rising
contour of Tone 2 (Attina et al., 2010).

Together, the findings based on the analyses of head, eyebrow
and lip movements reveal linguistically meaningful facial cues in
tone articulation. One subsequent question yet to be addressed is
whether speakers make use of such cues to modify their speech,
such as in clear speech in adverse listening contexts with the
intention of enhancing intelligibility. Han et al. (2019) analyzed
videos of Mandarin tone production teaching (clear) style by
four Mandarin instructors. They found a greater total amount
of facial movements and longer durations in clear relative to
natural (plain) speech. There were also tone-specific differences,
with greater horizontal movements for the high-level tone and
greater vertical movements for the rising and falling tones in
clear than plain speech. However, the measures were limited
to the three general facial movement measures (total amount,
horizontal, vertical) and were not associated with particular facial
regions (e.g., eyebrows, lips) as revealed by other research (Attina
et al., 2010; Garg et al., 2019). It is thus unclear whether
the exaggerated facial movements observed in clear speech are
associated with code-based linguistically meaningful tonal cues
identified previously.
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1.2. The present study

In this study, we compare movements of the head, eyebrows
and lips associated with clear vs. plain speech styles of
Mandarin tone articulation. The comparisons are based on a
comprehensive set of static (distance- and time-based) cues as
well as dynamic (kinematic-based) cues identified to characterize
different Mandarin tone categories in our previous research (Garg
et al., 2019).

Mandarin tone provides a unique case in examining clear-
speech characteristics in articulation. As mentioned previously,
the articulation of tone primarily involves laryngeal activities not
necessarily distinguishable through visible articulatory movements.
It is thus unclear if clear-speech modifications involve exaggerated
signal-based facial movements in general or enhancement of code-
based linguistically relevant articulatory movements. The current
study aims at disentangling which articulatory features are used in
clear-speech modifications across tones (signal-based) and which
features are unique for individual tones, and furthermore, if
such tone-specific adjustments are aligned with the (code-based)
category-defining features for each tone identified in Garg et al.
(2019). Such findings will have implications for unraveling which
visual cues may enhance tone perception and intelligibility.

2. Methods

2.1. Speakers and stimuli

2.1.1. Speakers
Twelve female and eight male native Mandarin speakers aged

between 18 and 28 years (mean: 22.6 years) were recruited. The
speakers were born and have spent at least the first 18 years of
their lives in either Northern China or Taiwan. They had resided
in Canada for less than five years at the time of recording.

2.1.2. Stimuli
The stimuli were monosyllabic Mandarin words, each

containing the vowel /7/ with one of the four Mandarin tones,
carrying the meaning of “graceful” (/71/; Tone 1, high-level tone),
“goose” (/72/; Tone 2, mid-high-rising tone), “nauseous” (/73/;
Tone 3, low-dipping tone), or “hungry” (/74/; Tone 4, high-falling
tone), respectively.

2.1.3. Elicitation of plain and clear speech
The elicitation of plain and clear tones followed the procedures

developed previously (Maniwa et al., 2009; Tang et al., 2015).
A simulated interactive computer speech recognition system was
developed using MATLAB (The Mathworks, R2013, Natick, MA,
USA), where the program seemingly attempted to recognize a
target stimulus produced by a speaker. The speaker was first
instructed to read each of the stimuli that was shown on the
screen naturally (to elicit plain style productions, e.g., /74/). Then
the program would show its “guess” of the produced token.
The software would systematically make wrong guesses due to
“recognition” tonal errors (e.g., Did you say /73/?). The speaker

was then requested to repeat the token more clearly (to elicit
clear style productions, e.g., /74/). A total of 96 pronunciations of
tone quadruplet words in two speaking styles (plain, clear) were
videotaped from each speaker over three recording sessions (4
tones x 2 styles x 12 repetitions). The average duration of the target
stimuli was 580ms (SD= 193ms) across styles, tones and speakers.
In addition to the /7/ word we also recorded /i/ and /u/ words
as fillers.

2.1.4. Recording
The data was collected in a sound-attenuated booth in the

Language and Brain Lab at Simon Fraser University. The speaker
sat approximately three feet from a 15-inch LCDmonitor on which
the stimulus word was presented. The monitor was positioned at
eye-level to facilitate the placement of a front-view video camera,
which was placed below the monitor on a desktop tripod. A high-
definition Canon Vixia HF30 camera was used to record the front-
face of the speaker. The frame rate of the camera is 29 fps. Each
speaker was made to sit with their back against a monochromatic
green backdrop and was recorded separately. For interaction with
the computer display, speakers were instructed in the usage of a
video game wireless controller, which offered a comfortable and
quiet way to interact with the display with minimal movement
required from the speaker and introduced minimal interference
with the video and audio recordings.

2.2. Analysis

The analysis followed the tone articulation analysis approach
previously developed by our team (Garg et al., 2019). It first
involved extraction of articulatory features. Two analyses were
subsequently conducted across tones and for each tone. First,
discriminative analysis of the extracted motion features in clear
and plain styles was conducted via random forest classification
(Paul and Dupont, 2015). Random forest tests the features
using multivariate analysis to identify which features significantly
differentiate plain and clear styles and rank the importance of these
features in contributing to the plain-clear differentiation. Second,
for each of the features identified by random forest, the extent
of movements (e.g., head movement distance) in plain vs. clear
speech were compared using mixed-effects modeling to determine
which of the features involved a significant difference between the
two styles.

2.2.1. Feature extraction
A total of 33 facial articulatory features which were previously

identified as tone characterizing features (Garg et al., 2019) were
included in this study to examine the plain-clear style differences.

Feature extraction involved the following steps using
computer-vision and image processing techniques. First, regions
of interest (ROI) on the face such as eyes, nose and lips of the
speaker were identified on the first frame of the video and were
subsequently tracked in the rest of the video. Briefly, the bounding
box on the regions of interest are identified using LBP (Local Binary
Pattern) cascade filters and then landmark-outlines are identified
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using active contour models. Specific keypoints on the landmark
outlines such as nose tip, inner corner of the left eyebrow,2 and
cupid’s bow on lips are identified for tracking purposes. The
Kanade-Lucas-Tomasi (KLT) feature-tracking algorithm was then
used to track the aforementioned keypoints after they were found
on the first frame of each video token. Next, the 33 features were
computed on the motion trajectories of four keypoints identified
on the nose tip (proxy for head movement), the left eyebrow, and
the midpoints of the upper and lower lips. Then, each set of features
was normalized to account for between-speaker differences, by
dividing the feature values by a normalization factor computed as
the shortest distance between the line joining the two eyes and the
nose tip for subsequent analyses.

The absolute mean value was computed for each feature
and each style to compare if the magnitude of the movements
is different in clear speech than plain speech and when these
movements occur during the tone production.

The 33 features can be generally classified into three categories:
(1) distance-based, characterizing the minimum or maximum
total displacement of a keypoint from its initial resting position
to a target position; (2) time-based, characterizing the time it
takes the displacement of a keypoint to reach maximum or
minimum distance; and (3) kinematic, characterizing the velocity
and acceleration of a keypoint at a specific time instance marked by
a target event (e.g., instance when velocity reaches a maximum).

Table 1 contains a list of all the features and their descriptions.
The distances are measured in pixels and the relative times
are measured by the number of video frames divided by the
total number of frames. Each feature is normalized to remove
the variations due to head size among different speakers.
Normalization was done by dividing the feature values by a
normalization factor computed as the shortest distance between
the line joining the two eyes and nose tip in that particular
token. Since the features are normalized, the reported feature
magnitudes are unitless. Figure 1 illustrates an example video frame
showing the keypoints which are tracked for head, eyebrow and
lip movements, and movement trajectories for a sample token in
plain and clear speech styles. The distance-based features were
calculated as the minimum and maximum distances that each of
the tracked keypoints moved from its initial resting state. The
positive measurements from the resting state signify an action of
rising or opening, whereas negative measurements represent an
action of lowering or closing. Velocities were then calculated as
rate of change of the curve (i.e., slope). Finally, the acceleration is
computed by the rate of change in the velocity curve.

We assessed the physical head size of two randomly selected
speakers—one male and one female—in order to relate the derived
measures from pixels to physical units (i.e., mm). For distance-
based features, each pixel measured to 0.33mm for male and
0.36mm for female. For time-based and kinematic features, the

2 Left eyebrow was chosen based on the previous findings that the left

relative to right eyebrow is more prominent in prosodic production and is

more strongly correlated with prosodic patterns (Cavé et al., 1996; Swerts

and Krahmer, 2008). Future research could compare measures of left vs.

right eyebrows to further examine how left and right eyebrows contribute

to plain-to-clear modifications of Mandarin tones.

videos were recorded at 29 fps and can be used to convert the
per frame unit to per seconds. For examples, (1) the average head
displacement for the male speaker during head-raising is 1.58mm
(4.75 pixels) and 5.88mm (16.14 pixels) for the female speaker, and
(2) the maximum head velocity during head-raising is 0.32 mm/s
(0.98 pixels/s) for the male speaker and 0. 67 mm/s (1.83 pixels/s)
for the female speaker. Further information for each feature can be
found in Supplementary Table A1 of Garg et al. (2019).

2.2.2. Discriminative analysis via the random
forest approach

We adopted the improved random forest approach developed
by Paul and Dupont (2015), which was especially appropriate for
this study since it enabled us to assess both the significant features
and the ranking of these features that differentiate the two styles.

Random forest classification works by training an ensemble of
basic decision trees, each of which predicts (or outputs) a class
label given an input pool of features, with the final class label being
determined by computing the average of the class label predictions
from each tree. By using a random subset of samples and a random
subset of features to train each tree, randomness is introduced into
the system. In order to ensure reproducibility of the experiments, a
random seed is set so that in every run the same random numbers
are generated.

In our experiments, 1,500 trees were used for random forest
classifiers. The style discriminative analysis involved a binary
classification of clear vs. plain speech style from the recorded video
tokens described above.

2.3. Analysis of plain- and clear-speech
comparisons

Our main goal was to examine which of the tone-defining
features reported in Garg et al. (2019) could significantly
differentiate the two speech styles. To this end, we conducted
two types of comparisons: style differences across tones, and style
differences within each tone.

2.3.1. Style comparisons across tones
The random forest analysis first provided us with features

that differentiate the two styles across tones. All the features
from different tones were pooled together and used as a
training set for the random forest classifier. Then each feature
importance was computed by permuting the samples in that
feature and measuring the change in the prediction power. For
each feature, if the measured changes were deemed statistically
significant, then that feature would be considered important in
differentiating the two styles across tones. We then employed
the feature importance weights (Paul and Dupont, 2015) to rank
the features in decreasing order of importance using leave-one-
out cross-validation. The larger the weight, the more important
the feature is for style discrimination. The features that were
found to be important were further analyzed using linear mixed-
effects modeling with style as the independent variable and
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TABLE 1 The set of 33 features used to represent tone articulation in each video token (cf. Garg et al., 2019).

ROI Full feature name Short term Type (distance, time,
kinematic)

Head Maximum displacement of the head while head-raising from its starting
position

max_vert_head_distance Distance

Head Maximum displacement of the head while head-lowering from its starting
position

min_vert_head_distance Distance

Head Average distance head moved during the utterance avg_abs_vert_head_distance Distance

Head Total distance traveled by head during the utterance total_abs_vert_head_distance Distance

Eyebrow Maximum displacement of the eyebrow while eyebrow-raising from its starting
position

max_vert_left_eye_distance Distance

Eyebrow Maximum displacement of the eyebrow while eyebrow-lowering from its
starting position

min_vert_left_eye_distance Distance

Eyebrow Average distance eyebrow moved during utterance avg_abs_vert_left_eye_distance Distance

Eyebrow Total distance eyebrow moved during the utterance total_abs_vert_left_eye_distance Distance

Lips Maximum lip-opening distance max_lips_distance Distance

Lips Maximum lip-closing distance min_lips_distance Distance

Lips Average distance lips moved during utterance avg_lips_distance Distance

Lips Total distance lips moved during the utterance total_abs_lips_distance Distance

Head Relative time at which the displacement of the head while head-raising was
maximum

time_max_head_vert_distance Time

Head Relative time at which the displacement of the head while head-lowering was
maximum

time_min_head_vert_distance Time

Head Relative time at which the head velocity was maximum during head-raising time_max_head_vert_velocity Time

Head Relative time at which the head velocity was maximum during head-lowering time_min_head_vert_velocity Time

Eyebrow Relative time at which the displacement of the eyebrow while eyebrow-raising
was maximum

time_max_left_eye_vert_distance Time

Eyebrow Relative time at which the displacement of the eyebrow while
eyebrow-lowering was maximum

time_min_left_eye_vert_distance Time

Eyebrow Relative time at which the eyebrow velocity was maximum during
eyebrow-raising

time_max_left_eye_vert_velocity Time

Eyebrow Relative time at which the eyebrow velocity was maximum during
eyebrow-lowering

time_min_left_eye_vert_velocity Time

Lips Relative time at which the amount of lip-opening reached maximum time_max_lips_distance Time

Lips Relative time at which the amount of lip-closing reached maximum time_min_lips_distance Time

Lips Relative time at which the lip velocity during lip-opening was maximum time_max_lips_velocity Time

Lips Relative time at which the lip velocity during lip-closing was maximum time_min_lips_velocity Time

Head Maximum head velocity during head-raising max_head_vert_velocity Kinematic

Head Maximum head velocity during head-lowering min_head_vert_velocity Kinematic

Head Maximum absolute acceleration of the head max_abs_head_vert_acceleration Kinematic

Eyebrow Maximum eyebrow velocity during eyebrow-raising max_left_eye_vert_velocity Kinematic

Eyebrow Maximum eyebrow velocity during eyebrow-lowering min_left_eye_vert_velocity Kinematic

Eyebrow Maximum absolute acceleration of the eyebrow max_abs_left_eye_vert_acceleration Kinematic

Lips Maximum lips velocity during lip-opening max_lips_velocity Kinematic

Lips Maximum lips velocity during lip-closing min_lips_velocity Kinematic

Lips Maximum absolute acceleration of the lips max_abs_lips_acceleration Kinematic

Head, eyebrows (left eye) and lips are the regions of interest (ROI); “max” in short term represents a raising or opening event and “min” represents a falling or closing event. All the time-related

features start with “time” in the short term.
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FIGURE 1

The left-side image shows the landmark points (keypoints) at which the trajectory of the vertical movement is measured. A total of four keypoints are
selected corresponding to the nose tip (proxy for the head, blue), left eyebrow (red), and lips (white). The right-side plots show the head, eyebrow,
and lip movement trajectories for a sample token comparing the clear and plain speech style. Normalization factor used in the analysis is the length
of the line segment AN. D, distance; t, time; v, velocity; max, raising/opening; min, lowering/closing (The face is generated by AI.).

the value of each important feature as the dependent variable
using the MATLAB fitlme. The random intercept and slope
of style on speaker were included in the models with the
following syntax:

feature∼ style + (1+ style|speaker)

The final set of features that involve a significant
style difference as determined by the mixed-effects
modeling are considered generic (non-tone-specific)
style features.

2.3.2. Style comparisons for each tone
To examine which features were different between the two

styles within each tone, we performed similar random forest
and mixed-effects modeling analyses as described in Section
2.3.1. for each tone separately. After identifying a set of features
that involve a significant difference in style for each tone, we
compared these style-characterizing features to those obtained
in Garg et al. (2019) that define each tone. We hypothesized
that, for a particular tone, any style-characterizing features that
overlap with tone-defining features are considered involving tone-
specific clear-speech modifications. In contrast, any that overlap
with the cross-tone features identified in 2.3.1 should be style-
specific only.

3. Results

3.1. General style di�erence across tones

First, we present the discriminant analysis results on the 33
features using random forest (RF). Using the procedure described
in Section 3, thirteen features were found to be significant using
RF classifier in differentiating the two speech styles, as shown in
Figure 2. The features are arranged in descending order of their
importance as determined by the random forest classifier. For each
feature, the weight is the increase in prediction error if the values of
that feature are permuted across the out-of-bag observations. This
measure is computed for every decision tree in RF, then averaged
over the entire ensemble and divided by the standard deviation over
the entire ensemble. A larger error means that the feature is more
important in classifying the style. Among the thirteen features,
eight were found to be distance-based and five were related to
time. The distance-based features primarily involve changes in the
vertical distance of the head, lips and eyebrows, and the time-based
features primarily involve changes in the time when the vertical
head, lip and eyebrow movements reach maximum velocity. The
feature importance ranking further revealed that the “Relative time
at which the lip velocity during lip-opening was maximum” was the
most differentiating feature to distinguish the two styles followed by
the “Maximum displacement of the head while head-lowering from
its starting position”, whereas the “Maximum lips velocity during
lip-closing” was the least significant factor.

Frontiers inCommunication 07 frontiersin.org

https://doi.org/10.3389/fcomm.2023.1148240
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Garg et al. 10.3389/fcomm.2023.1148240

FIGURE 2

Important features identified by the random forest analysis in di�erentiating the two speech styles (clear and plain). The y-axis shows the feature
importance measured by the random forest. The feature importance measures the increase in classification error if the values of the feature are
permuted. The greater the error the higher the importance of the feature is.

To further determine the significance of the differences of the
speech style for each of the thirteen features identified by the
random forest classifier, the mean values of the normalized feature
in clear and plain speech were compared using linear mixed-effects
analysis as described in 2.3.1. The results, as summarized in Table 2,
show that twelve out of thirteen features involve a significant
clear-plain difference. Figure 3 displays the clear and plain style
comparisons for each feature.

Specifically, the eight features where the magnitude of change
is larger in clear than plain style include:

1. Maximum displacement of the head while head-raising from
its starting position.

2. Maximum displacement of the head while head-lowering
from its starting position.

3. Maximum lip-opening distance.
4. Maximum displacement of the left eyebrow while eyebrow-

raising from its starting position.
5. Average distance left eyebrow moved during utterance.
6. Total distance traveled by left eyebrow during the utterance.
7. Maximum head velocity during head-raising.
8. Relative time at which the amount of lip-closing

reached maximum.

The four features where the magnitude of change is smaller in
clear than plain style are:

1. Relative time at which the head velocity was maximum
during head-raising.

2. Relative time at which the lip velocity during lip-opening
was maximum.

3. Relative time at which the left eyebrow velocity wasmaximum
during eyebrow-raising.

4. Relative time at which the amount of lip-opening
reached maximum.

The above list and Figure 3 shows that eight significant features
had a larger movement magnitude in clear speech than in plain
speech. These eight features are either distance or time related,
including greater maximum distance of head raising or lowering,
eyebrow raising andmovement, and lip opening from their starting
positions in clear than plain style, as well as longer time at which the
amount of lip closing reached maximum in clear than plain style.
These patterns suggest larger head, eyebrow and lip movements
and faster arrival at the movement peak in clear relative to plain
tone production. In contrast, four time-related features involved
smaller magnitude of change in clear than plain speech, including
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TABLE 2 Summary of the mixed-e�ects linear regression model for each of the features that involves a significant clear-plain di�erence across tones.

Feature Name Estimate SE t-stat DF p-value

max_head_vert_velocity 0.004 0.001 3.299 1,809 0.001

time_max_head_vert_velocity −0.035 0.011 −3.241 1,809 0.001

min_vert_head_distance 0.033 0.011 3.137 1,809 0.002

max_vert_head_distance 0.020 0.008 2.410 1,809 0.0160

time_max_left_eye_vert_velocity −0.029 0.010 −2.915 1,809 0.004

avg_abs_vert_left_eye_distance 0.005 0.002 2.229 1,809 0.026

max_vert_left_eye_distance 0.014 0.007 2.057 1,809 0.040

total_abs_vert_left_eye_distance 1.059 0.368 2.878 1,809 0.004

time_max_lips_velocity −0.030 0.011 −2.797 1,809 0.005

time_max_lips_distance −0.023 0.011 −2.155 1,809 0.031

time_min_lips_distance 0.058 0.024 2.428 1,809 0.015

max_lips_distance 0.024 0.011 2.286 1,809 0.022

FIGURE 3

Comparisons of the group means of each of the thirteen important features (determined by random forest analyses) in clear and plain style
irrespective of the tones. The y-axis shows the average normalized feature value for that particular style group. Twelve features were found to exhibit
statistically significant di�erences between the two speech styles by mixed-e�ects modeling. The error bar on each of the bar plots shows the
standard error. A * above a bar represents a p-value smaller than 0.05.
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FIGURE 4

Important features identified by the random forest analysis in di�erentiating the two speech styles (clear and plain) in Tone 1. The y-axis shows the
feature importance measured by the random forest. The feature importance measures the increase in classification error if the values of the feature
are permuted. The greater the error the higher the importance of the feature is.

shorter time taken for head raising, lip opening and eyebrow
raising to reach maximum velocity. These features indicate that
movement maxima happened earlier in clear than plain style,
suggesting faster arrival at the movement peak in clear relative to
plain tone production.

Overall, these patterns consistently reveal larger maximum
displacement of head, eyebrow and lips, and faster arrival at
these positions in clear than plain tone production, demonstrating
exaggerated articulation in clear speech.

3.2. Tone-specific analysis

Next, we analyze each tone separately to identify tone-specific
features that can differentiate the two styles. These features are
then compared with the set of features characterizing each tone as
reported in Garg et al. (2019) to determine the extent to which clear
speech modifications adopt tone-intrinsic features.

3.2.1. Tone 1 (High-level tone)
First, the random forest analysis showed six important features

differentiating the two speaking styles in Tone 1, listed in Figure 4
in decreasing order of their feature importance values. Four out

of six features were time related, with the “Relative time at which
the lip velocity during lip-opening was maximum” having the
largest feature importance whereas “Relative time at which the
displacement of the eyebrowwhile eyebrow-raising wasmaximum”
having the smallest weight. Apart from these time-related features,
“Maximum displacement of the head while head-lowering from
its starting position” and “Maximum eyebrow velocity during
eyebrow-raising” were also found to be important.

The difference in the magnitude of the mean values was then
evaluated between the two styles using mixed-effects modeling.
As displayed in Figure 5, for Tone 1, two features were found
significant in differentiating the two styles, with ’maximum
displacement of the head while head-lowering from its starting
position’ being larger in clear than plain speech (β = 0.039,
standard error (SE) = 0.015, t (406) = 2.30, p < 0.05) and ‘the
relative time at which the displacement of the head while head-
raising was maximum’ being smaller in clear than in plain speech
(β = −0.045, SE = 0.023, t (406)= −1.979, p < 0.05). The first
feature regarding head lowering distance has been identified not
only as a tone-generic feature (3.1) but also as one of the defining
features for Tone 1 in Garg et al. (2019), where head-lowering
distance is the smallest in value among all the tones, reflecting that
articulation of Tone 1 involves minimal head movement compared
to the other tones.
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FIGURE 5

Comparisons of the group means of each of the six important features (determined by random forest analyses) in clear and plain style in Tone 1. The
y-axis shows the average normalized feature value for that particular style group. Two features were found to exhibit a statistically significant
di�erence between the two speech styles by mixed-e�ects modeling. The error bar on each of the bar plots shows the standard error. A * above a
bar represents a p-value smaller than 0.05.

3.2.2. Tone 2 (High-rising tone)
The random forest analysis identified five out of 33 features as

important features in style discrimination for Tone 2, in descending
importance ranking (see Figure 6):

1. Relative time at which the lip velocity during lip-opening
was maximum.

2. Relative time at which the lip velocity during lip-closing
was maximum.

3. Relative time at which the amount of lip-closing
reached maximum.

4. Total distance traveled by head during the utterance.
5. Total distance traveled by left eyebrow during the utterance.

Mixed-effects modeling revealed that the two styles were
significantly different for all the five features (Figure 7). In both
distance-related features clear speech had larger magnitude of
movement than plain speech, indicating that the total distance
traveled by the head (β = 1.686, SE = 0.631, t (454) = 2.669, p <

0.01) and eyebrow (β= 1.338, SE= 0.549, t (454)= 2.437, p< 0.05)
are longer in clear than plain speech. For time-related features, clear
relative to plain speech took shorter time for the lip-opening (β =

−0.042, SE= 0.012, t (454)=−3.443, p< 0.001) and lip-closing (β
=−0.043, SE= 0.014, t (454)=−3.004, p< 0.05) velocity to reach
maximum, while the lips took more time to close (β = 0.107, SE =

0.040, t (454) = 2.659, p < 0.05). Thus, although clear speech may
involve larger movement and may take longer to complete than
plain speech, it tends to reach movement maxima sooner. These
patterns are aligned with the overall clear speech features across
tones reported above.

Garg et al. (2019) reported that the feature distinguishing Tone
2 from the rest of the tones was that ’relative time at which the
displacement of the head while head-raising was maximum’ was
longer for Tone 2 than for the other tones. The current results show
that this feature was not used in the clear-plain speech distinction.
Hence, for Tone 2, all the identified features characterizing the
clear-plain differences involve style-specific modifications.

3.2.3. Tone 3 (Low falling-rising tone)
For Tone 3, nine features were found to be important based

on random forest discriminative analysis (Figure 8). Six out of
these nine features are time related and the other three are
distance based. The most important feature was “Maximum
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FIGURE 6

Important features identified by random forest in di�erentiating the two speech styles (clear and plain) in Tone 2. The y-axis shows the feature
importance measured by the random forest. The feature importance measures the increase in classification error if the values of the feature are
permuted. The greater the error the higher the importance of the feature is.

displacement of the head while head-raising from its starting
position” whereas the least weighted feature was “Relative time
at which the displacement of the eyebrow while eyebrow-raising
was maximum.”

Follow-up mixed-effects modeling reveals three features to
be significantly different in their magnitude between the two
speech styles (Figure 9). Two features are time-related. Specifically,
“relative time taken for lip-opening velocity to reach maximum” (β
= −0.041, SE = 0.016, t (519) = −2.625, p < 0.05) and “relative
time taken for head-raising velocity to reach maximum” (β =

−0.039, SE = 0.017, t (519) = −2.330, p < 0.05) are shorter in
clear than in plain speech, indicating a faster approach to target
gesture in clear speech. The third feature is distance-related, where
“maximum displacement of the head while head-raising from its
starting position” (β= 0.035, SE= 0.012, t (519)= 2.863, p< 0.05)
is larger in clear than in plain speech, indicating larger movements
in clear speech style.

Among the three significant style-distinguishing features, the
feature involving the “relative time at which the head velocity
was maximum during head-raising” was identified as one of
the Tone 3-specific features previously (Garg et al., 2019),
where it was shorter for Tone 3 relative to the other tones.
However, this change is also a universal clear-speech pattern
across tones.

3.2.4. Tone 4 (High-falling tone)
For Tone 4, random forest analysis revealed eight features to

be important in style distinctions (Figure 10), among which seven
are time-based and one is related to distance. The most important
feature is the “Relative time at which the displacement of the
head while head-lowering was maximum” and the least important
feature is the “Relative time at which the amount of lip-closing
reached maximum.”

Three out of these eight features are shown to involve
significant differences between plain and clear speech, as
determined by further mixed-effects analysis (Figure 11).
Specifically, the “relative time at which the head velocity was
maximum during head-raising” was found to be shorter in clear
than in plain speech (β = −0.043, SE = 0.016, t (424) = −2.735,
p < 0.05). The second feature involves “relative time at which the
amount of lip-closing reached maximum” (β = 0.092, SE = 0.036,
t (424) = 2.581, p < 0.05), which occurred later in clear than in
plain style, suggesting longer duration in clear-speech production.
The third feature is the “total distance traveled by head during
the utterance “(β = 1.948, SE = 0.703, t (424) = 2.770, p < 0.05),
which appears to be larger in clear than plain speech, as expected.

One of these significant features was a Tone 4-specific feature
(Garg et al., 2019); that is, the “relative time at which the head
velocity was maximum during head-raising” was shorter for Tone
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FIGURE 7

Comparisons of the group means of each of the five important features (determined by random forest analyses) in clear and plain style in Tone 2. The
y-axis shows the average normalized feature value for that particular style group. All features were found to exhibit a statistically significant di�erence
between the two speech styles by mixed-e�ects modeling. The error bar on each of the bar plots shows the standard error. A * above a bar
represents a p-value smaller than 0.05.

4 relative to most of the other tones, indicating faster return of
the head to the resting position after the head lowering gesture for
the falling Tone 4. Clear speech, with an even faster head-raising
velocity, apparently enhanced this feature.

3.3. Summary of results

In summary, across tones, clear speech demonstrated
exaggerated articulation compared to plain speech, with larger
maximum displacement of head, eyebrows and lips, and faster
arrival at these positions. The analysis of individual tones showed
that these general clear-speech enhancement patterns primarily
hold for each tone, while certain tone-specific features were
also strengthened.

For Tone 1, two features showed a significant difference
between plain and clear speech, including one tone-specific
feature, namely head lowering distance. However, the direction
of this clear-speech modification was in conflict with the Tone
1 intrinsic feature. That is, while Tone 1, as a level tone, was
characterized as having smaller head lowering compared to the
other tones, the movement was not further restrained in clear
speech. Instead, clear speech demonstrated larger head lowering

than plain speech, consistent with the tone-general pattern of
larger movements in clear relative to plain speech. Similarly,
the second significant feature showing a plain-to-clear difference,
which involved shorter time taken for head-raising to reach
maximum in clear speech, was also in line with the across-tone
patterns of faster arrival at the movement peak in clear than plain
tone production.

For Tone 2, what significantly distinguished clear and plain
styles involved no Tone 2-specific features. Instead, plain-to-
clear speech modifications of Tone 2 involved larger head and
eyebrow movements and longer (lip-closing) time to complete
the production, as well as quicker lip movements to reach target
gesture, which were primarily aligned with the overall clear speech
features across tones.

Tone 3 clear speech modifications involved one unique Tone 3
feature. The quicker attainment of head-raising velocity maximum
in clear relative to plain speech was aligned with the patterns
characterizing this tone, where the time taken to achieve maximum
head-raising velocity was shorter for Tone 3 than for the other
tones. However, this feature is also identified as a tone-universal
clear-speechmodification (cf. Figure 3). Moreover, the clear-speech
modifications of larger head raising and faster lip opening velocity
did not involve Tone 3-specific features. Thus, Tone 3 clear-speech

Frontiers inCommunication 13 frontiersin.org

https://doi.org/10.3389/fcomm.2023.1148240
https://www.frontiersin.org/journals/communication
https://www.frontiersin.org


Garg et al. 10.3389/fcomm.2023.1148240

FIGURE 8

Important features identified by random forest in di�erentiating the two speech styles (clear and plain) in Tone 3. The y-axis shows the feature
importance measured by the random forest. The feature importance measures the increase in classification error if the values of the feature are
permuted. The greater the error the higher the importance of the feature.

modifications essentially adopt universal features characterizing
clear-speech tone.

Tone 4 clear-plain differences made use of one Tone 4-specific
feature. That is, the time taken for head-raising velocity to reach
maximum, which was shorter for Tone 4 than for most of the other
tones, was even shorter in clear than in plain speech, suggesting
faster return of the head to the resting position after the head
lowering gesture for the falling Tone 4. However, this feature,
along with the shorter time taken for eyebrow-raising velocity
maximum, was also consistent with the patterns across tones.
Additionally, “the time taken for the distance of lip-closing to reach
maximum”, occurred later in clear than in plain style, suggesting
longer duration in clear-speech production.

4. Discussion and concluding remarks

In this study, we examined how visual tonal cues are enhanced
in clear speech in the production of Mandarin Chinese tones.
As tone production lacks a direct association with vocal tract
configurations, it is believed to be less distinguishable through
visible articulatory movements. The question thus raised in this
study was, in the production of clear-speech tones, whether any

modifications of the visual articulatory features strengthen overall
visual saliency (signal-based) or augment tone-specific distinctions
(code-based). To this end, we compared which visual cues were
adopted in clear speech across tones (as evidence of signal-based
modifications) and which ones were aligned with the category-
defining features for each tone as identified in Garg et al. (2019)
(as evidence of code-based modifications).

Through computer vision analyses, this study tracked and
quantified 33 facial features associated with head, eyebrow, and
lip movements to determine the distance, duration, and kinematic
characteristics between each of the keypoints in clear vs. plain
tone productions. A 2-step discriminant analysis based on random
forest and subsequent mixed-effects modeling was performed,
first across tones and then for each tone, to identify the visual
features differentiating clear and plain tone productions and rank
the importance of these features, and then compare the values
of each feature in clear and plain speech to assess if they are
significantly different.

The results show differences in visual features between the two
speech styles from both cross-tone and within-tone comparisons.
Overall, the difference between the two styles lies both in spatial
and temporal features as indicated by changes in distance, duration,
velocity and acceleration of lip, eyebrow and head movements
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FIGURE 9

Comparisons of the group means of each of the nine important features (determined by random forest analyses) in clear and plain style in Tone 3.
The y-axis shows the average normalized feature value for that particular style group. Three features were found to exhibit a statistically significant
di�erence between the two speech styles by mixed-e�ects modeling. The error bar on each of the bar plots shows the standard error. A * above a
bar represents a p-value smaller than 0.05.

associated with clear vs. plain tone productions. The common
trend exhibited through these features indicates that signal-based
plain-to-clear tone modifications are more dominant than code-
based modifications, and are evidenced by both across tone and
individual tone results.

Across tones, clear (compared to plain) productions show
longer overall duration, larger maximum displacement of the
head, eyebrows and lips and faster arrival at these movement
peaks. First, the larger displacement maxima and longer duration
indicate that clear-speech production of all the tones involves more
extended articulatory trajectories, and consequently, takes longer
to complete. Such patterns are consistent with previous studies
revealing exaggerated articulation in clear speech segments. For
example, studies on vowel articulation have consistently revealed
longer duration along with greater articulatory movements
(involving larger lip and jaw displacement across vowels) for
clear relative to plain speech (Kim and Davis, 2014; Tang et al.,
2015). Similar exaggerated articulatory activities have also been
identified at the suprasegmental level such as long and short
vowels (Šimko et al., 2016) as well as lexical tones (Han et al.,
2019). Moreover, aside from these spatial features, the current
results additionally reveal that, despite the longer distance, clearly
produced tones generally reach movement peak positions faster.
Such a combination of motion may consequently make the visual
cues more prominent, thus enhancing the saliency of tones in
clear speech. These findings consistently demonstrate signal-based
modifications in clear-speech production across tones through both

distance-based and time-based changes with overall enhancement
of visual saliency.

Results of individual tone analyses corroborate the patterns
across tones, revealing signal-based modifications predominantly.
In addition to these general patterns, the current individual-tone
findings are particularly noteworthy in that they strengthen the
signal-based nature of clear-speech tone modifications in three
ways. First, certain tone-general modifications are found to be
incompatible with the inherent characteristics of individual tones.
For example, the Tone 1 plain-to-clear modification followed
the tone-general pattern of larger head lowering. However, as a
level tone, Tone 1 inherently involves minimal head and eyebrow
movements, presumably attributable to its small variation in pitch
(Yehia et al., 2002; Munhall et al., 2004; Kim et al., 2014; Garg
et al., 2019). Thus, it appears that signal-based information was
adopted in clear Tone 1 modification even when it is in conflict
with the intrinsic characteristics of this tone. Second, although
some modifications involve tone-characterizing features, they are
also aligned with universal clear-speech patterns. For example, for
Tone 3, the quicker attainment of head-raising velocity maximum
in clear relative to plain speech is aligned with the tone-general
patterns as well as being an intrinsic property of this tone.
Consequently, such tone-specific adjustments cannot be regarded
as code-based alone. Third, significant tone-specific features fail to
exhibit changes in clear speech. Notably, Tone 2 and Tone 3, as
dynamic tones, have been identified as having multiple category-
defining features (Garg et al., 2019). However, most of the crucial
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FIGURE 10

Important features identified by random forest in di�erentiating the two speech styles (clear and plain) in Tone 4. The y-axis shows the feature
importance measured by the random forest. The feature importance measures the increase in classification error if the values of the feature are
permuted. The greater the error the higher the importance of the feature is.

features of these tones, such as the low tone nature of Tone 3
(associated with head lowering, Garg et al., 2019) or its dynamicity
(associated with lip closing and raising, Attina et al., 2010), did
not exhibit corresponding modifications in clear speech. Taken
together, consistent with the cross-tone results, these individual
tone patterns suggest that signal-based cues outweigh code-based
ones in clear-speech modification.

Therefore, unlike the patterns found at the segmental level
for consonants and vowels showing signal- and code-based clear-
speech modification working in tandem (Smiljanić, 2021), the
current results suggest that visual clear-speech tone modifications
primarily do not rely on code-based, tone-specific cues. Although
previous findings on tone articulation indeed suggest alignments
of facial movements with spatial and temporal pitch movement
trajectories of individual tones (Attina et al., 2010; Garg et al.,
2019; Han et al., 2019), most of these cues were not adopted in
making tone-specific adjustments in clear speech. One possibility
could be that the visual tonal cues, which are shown to be based on
spatial and temporal correspondence to acoustic (F0) information
rather than a direct association with vocal tract configuration (as is

the case for segmental production), are not adequately distinctive
(Hannah et al., 2017; Burnham et al., 2022). This is especially
true for lip movements, which have been found to be less reliable
in differentiating tones (Attina et al., 2010; Garg et al., 2019).
Previous segmental studies suggest a trade-off in clear speech
production between cue enhancements and maintenance of sound
category distinctions (Lindblom, 1990; Ohala, 1995; Smiljanić,
2021). Speakers have been found to refrain from making clear-
speech adjustments which would blur category distinctions (Leung
et al., 2016; Smiljanić, 2021). In the case of the current study, the
speakers may have more readily adopted the universal features
that strengthen overall visual saliency since enhancing tone-specific
features cannot reliably distinguish different tone categories.

Finally, it is worth noting that the acoustic analysis of the
same data set by our research team (Tupper et al., 2021) has also
revealed that the speakers primarily utilize signal-based acoustic
changes (longer duration, higher intensity) in clear-speech tone
modifications rather than code-based F0 changes that enhance the
contrast between tones. This may also explain the lack of code-
based articulatory modifications in the current study, given the
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FIGURE 11

Comparisons of the group means of each of the eight important features (determined by random forest analyses) in clear and plain style in Tone 4.
The y-axis shows the average normalized feature value for that particular style group. Three features were found to exhibit a statistically significant
di�erence between the two speech styles by mixed-e�ects modeling. The error bar on each of the bar plots shows the standard error. A * above a
bar represents a p-value smaller than 0.05.

presumed audio-spatial correspondence between pitch and visual
articulatory movements (Connell et al., 2013; Garg et al., 2019).
These findings lead to the subsequent question as to whether these
articulatory and acoustic adjustments in clear speech benefit tone
intelligibility and whether these universal saliency enhancing cues
affect the perception of individual tones differently. The latter could
in turn help disentangle the signal- vs. code-based nature of clear
tone production.
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