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Research Article

Speech perception poses two challenges. First, acoustic 
cues are highly variable because of talker differences, 
overlap between phonemic segments (coarticulation), 
and differences in speaking rate. Second, speech arrives 
over time—cues are short-lived and occur asynchro-
nously. While most listeners solve these problems effort-
lessly, how they do so remains elusive.

With respect to the variability of acoustic cues, the 
starting assumption is often a bottom-up approach in 
which cues are mapped to units such as phonemes via 
boundaries or templates (Nearey, 1990; Oden & Massaro, 
1978). However, such approaches are not consistently 
successful because of the substantial variability in speech 
(Blumstein & Stevens, 1979; McMurray & Jongman, 2011; 
Smits, 2001). A compelling alternative is that the percep-
tual system engages in something akin to data explana-
tion. In this view, the bottom-up sensory signal is not the 
sole basis of perception. Rather, listeners use what they 
know to account for or explain what they have heard 

thus far. As these properties are tagged, the remainder 
has less variance and is used for further inference. The 
degree to which an explanation (or prediction) fails to 
fully account for the input suggests that other factors may 
have shaped it. Rather than perception proceeding from 
input to higher-level representations, perception is a con-
stant comparison between the input and expectations.

Data-explanatory accounts have been largely devel-
oped in research on vision and motor control (Rao & 
Ballard, 1999; Rhodes & Leopold, 2011; Wolpert & 
Flanagan, 2001). In speech, the fact that every aspect of 
the signal is simultaneously the product of multiple fac-
tors (talker, neighboring phonemes) makes data explana-
tion more compelling. Indeed, similar principles appear 
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Abstract
Acoustic cues are short-lived and highly variable, which makes speech perception a difficult problem. However, most 
listeners solve this problem effortlessly. In the present experiment, we demonstrated that part of the solution lies in 
predicting upcoming speech sounds and that predictions are modulated by high-level expectations about the current 
sound. Participants heard isolated fricatives (e.g., “s,” “sh”) and predicted the upcoming vowel. Accuracy was above 
chance, which suggests that fine-grained detail in the signal can be used for prediction. A second group performed the 
same task but also saw a still face and a letter corresponding to the fricative. This group performed markedly better, 
which suggests that high-level knowledge modulates prediction by helping listeners form expectations about what the 
fricative should have sounded like. This suggests a form of data explanation operating in speech perception: Listeners 
account for variance due to their knowledge of the talker and current phoneme, and they use what is left over to make 
more accurate predictions about the next sound.
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in various theories (Fowler & Smith, 1986; Gow, 2003; 
Kleinschmidt & Jaeger, 2015; McMurray & Jongman, 2011; 
Smits, 2001). They suggest that if listeners know some of 
the factors underlying the form of a segment (e.g., the 
talker was female), they can account for this variability to 
extract additional information. For example, while the 
absolute pitch of a segment is only moderately useful for 
identifying consonant voicing, if listeners know a man is 
speaking, they can identify the current pitch as high for a 
man, which makes pitch a more informative cue for 
voicing.

There is partial evidence that listeners use data expla-
nation to solve the problem of acoustic variability. 
Computational models, such as computing cues rela-
tive  to expectations (C-CuRE), demonstrate how data- 
explanatory principles improve categorization of highly 
variable corpora of phonetic measurements (Cole, 
Linebaugh, Munson, & McMurray, 2010), and such mod-
els yield listener-like accuracy levels and patterns of 
errors (McMurray & Jongman, 2011). Empirical studies 
also suggest that expectations about talkers bias listeners’ 
categorization of ambiguous phonemes (Hay & Drager, 
2010; Johnson, Strand, & D’Imperio, 1999); however, it is 
not clear that these expectations improve accuracy—as 
opposed to simply shifting categorization boundaries—in 
the context of variable speech. Thus, there is only partial 
evidence that data-explanatory processes are how listen-
ers attain accuracy when faced with acoustic variability.

The problem of the temporally unfolding signal seems 
to demand different solutions. Classic accounts suggest 
that listeners solve this problem by gradually accumulat-
ing partial evidence for multiple candidates in parallel 
(McClelland & Elman, 1986). Listeners may also cope 
with the problem of time by predicting upcoming mate-
rial. Phonetic analyses suggest that substantial coarticula-
tory information precedes any phoneme (Beddor, 
Harnsberger, & Lindemann, 2002; Daniloff & Moll, 1974), 
and listeners use these fine-grained details to anticipate 
the next phoneme (Gow, 2001; Martin & Bunnell, 1981; 
Salverda, Kleinschmidt, & Tanenhaus, 2014; Yeni-
Komshian & Soli, 1981).

In the experiment reported here, we asked what 
mechanisms underlie prediction. A bottom-up approach 
to prediction is simple and compelling. Such mechanisms 
could use coarticulatory detail to activate upcoming pho-
nemes earlier or more efficiently, and the time demands 
on prediction might argue for a rapid, autonomous pro-
cess. Alternatively, prediction may derive from data-
explanatory processes. In these schemes, as aspects of 
the signal (the current phoneme) are identified, variance 
that is not accounted for may signal upcoming pho-
nemes. Consequently, prediction is simultaneously an 
expectation about future material and the residual of data 

explanation. If predictions derive from (and participate 
in) data explanation, this mechanism would offer a unify-
ing solution for the problems of both acoustic variability 
and time.

A critical test of such an account is whether high-level 
knowledge about a segment enhances the accuracy of 
predictions. Such knowledge should not directly indicate 
the upcoming sound (as in classic top-down effects). 
Rather, these cues should inform listeners about sources 
of variability only in the current phoneme, enabling them 
to extract more predictive information from it for further 
judgments.

In our experiment, participants heard isolated frica-
tives such as /s/ and /ʃ/ and predicted the upcoming 
vowel. While fricatives contain substantial coarticulatory 
detail (Daniloff & Moll, 1974; Jongman, Wayland, & 
Wong, 2000), these cues are variable and inconsistent. 
However, if participants have expectations about what a 
specific fricative should sound like (e.g., knowing it was 
an /s/ spoken by a man), the value of the information in 
the signal for the vowel should increase. We manipulated 
expectations by showing or not showing participants a 
static picture of the talker and the orthographic label of 
the fricative. This visual information may allow partici-
pants to form more precise expectations about what the 
fricative should sound like, improving detection of subtle 
deviations from these expectations that signal the upcom-
ing vowel.

Method

Participants

Participants were 84 undergraduates at the University of 
Kansas. Forty-one were assigned to the no-expectations 
group, which did not receive any visual stimuli; 43 were 
assigned to the face+letter group, which did. An addi-
tional 4 participants were run in the no-expectations 
group but excluded from analysis for being native speak-
ers of more than one language. We attempted to screen 
participants in advance for knowledge of languages other 
than English. However, we did not discover that these 
participants were multilingual until they completed the 
language-background questionnaire after the experiment. 
Participants received course credit for participation and 
gave informed consent in accordance with the University 
of Kansas Institutional Review Board protocols. A sample 
size of 40 in each group was targeted at the onset of the 
study on the basis of our experience conducting similar 
work. Several extra participants were run in case any 
needed to be excluded. The data were not examined until 
all data were collected, and all participants (other than the 
multilinguals) were included in the analysis.
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Design and stimuli

Participants heard short segments of frication noise (e.g., 
/s/ by itself) that had been excised from complete record-
ings of fricative-vowel utterances. Their task was to pre-
dict which of four vowels would come next. The primary 
factor of interest was whether participants’ expectations 
affected their accuracy. Expectation was manipulated 
between participants either by presenting the auditory 
stimulus (the frication noise) in isolation (the no-expec-
tations condition) or by preceding it with a visual stimu-
lus consisting of the still face of the talker and the letter 
corresponding to the fricative (the face+letter condition). 
In the face+letter condition, the visual stimulus did not 
provide any direct information about the upcoming 
vowel.

Three stimulus factors were manipulated within par-
ticipants: the fricative itself (we tested all eight fricatives 
of English: /f/, /v/, /ɵ/, /ð/, /s/, /z/, /ʃ/, /ʒ/), the talker 
(10 talkers; 5 female, 5 male), and the vowel from which 
the fricative originally was excised (four vowels: /i/, /u/, 
/æ/, /ɑ/). These factors maximized the generality of our 
findings by forcing participants to cope with substantial 
variability to accurately anticipate the vowels.

Auditory stimuli were drawn from a corpus of frica-
tives recorded and phonetically analyzed by Jongman 
et al. (2000), which we have used in two prior perceptual 
studies (Apfelbaum, Bullock-Rest, Rhone, Jongman, & 
McMurray, 2014; McMurray & Jongman, 2011). The origi-
nal recordings consisted of fricative-vowel pairs compris-
ing all eight fricatives of English, spoken by 20 talkers, 
followed by six different vowels. For the present experi-
ment, we randomly chose 10 talkers and used only the 
four corner vowels. Jongman et al. recorded three repeti-
tions of each fricative; we chose the second repetition for 
the majority of the stimuli and the first or third if that 
token was unclear.

After selecting the 320 tokens (10 talkers × 4 vowels × 
8 fricatives), we removed the vocoid to create the final 
stimuli—fricatives in isolation. For voiceless fricatives, the 
vocoid was cut at the first evidence of any periodicity in 
the waveform; for voiced fricatives (which show period-
icity during the frication), the vocoid was cut at the first 
point where high-frequency frication energy decreased 
substantially. Phonetic analysis did not reveal any vocalic 
formants present in the final stimuli.

Faces were drawn from an Internet library. They were 
converted to gray scale, and each was randomly assigned 
to one of the original talkers of the study. Faces were 
selected on the basis of a pilot norming study to ensure 
that each was representative of its gender (i.e., that it 
looked extremely masculine or extremely feminine). The 
assignment of faces to auditory stimuli preserved gender 
(e.g., female faces were assigned only to female voices). 

Faces contained no articulatory information, nor did they 
provide any information concerning vocal tract size. 
Rather, faces primarily provided participants with knowl-
edge of the talker’s gender. Secondarily, since faces con-
sistently appeared with fricatives from the same talker, 
they provided a cue as to which fricatives should sound 
similar. In the face+letter condition, participants saw the 
common orthographic representations of fricatives (e.g., 
“S,” “SH,” “TH”), with the exception that “DH” was used 
to indicate /ð/, and “ZH” was used to represent /ʒ/.

Procedure

Stimuli were presented via headphones. On each trial in 
the no-expectations condition, participants heard a single 
fricative and indicated whether they thought the missing 
vowel was /i/ as in bead, /æ/ as in bad, /u/ as in booed, 
or /ɑ/ as in bod by pressing the appropriate button on a 
response box. No feedback was given after this response, 
and the next trial began 500 ms afterward. Button order 
was counterbalanced across participants. After 20 prac-
tice trials, three repetitions of the 320 tokens were pre-
sented in random order (960 total trials). The entire 
experiment took approximately 1 hr.

The face+letter condition was identical to the no-
expectations condition, except that each trial started with 
a fixation point (500 ms) followed by a picture of the face 
of the talker as well as the letter (or letters) representing 
the fricative on a computer screen (participants were 
instructed on these letter strings prior to the experiment). 
One second after the presentation of face and letters, the 
auditory stimulus was presented. Visual information 
remained on the screen until participants responded. 
(See Videos S1 and S2 in the Supplemental Material avail-
able online for sample trial sequences in the no-expecta-
tions and face+letter conditions, respectively.)

Statistical analysis

Data were analyzed with logistic mixed-effects models 
predicting the accuracy of the response (correct vs. incor-
rect). The fixed effects were as follows: expectancy con-
dition (face+letter = +.5, no expectations = −.5; then 
centered), talker gender (+.5 = male, −.5 = female), and 
vowel, which was contrast coded as two variables: height 
(−.5 = high: /i/, /u/; +.5 = low: /æ/, /ɑ/) and frontness 
(+.5 = front: /i/, /æ/; −.5 = back: /u/, /ɑ/). Fricative was 
the last fixed effect. It had eight levels and was coded 
with three contrast codes. The first two reflected voicing 
(+.5 = voiced: /ð/, /v/, /z/, /ʒ/; −.5 = voiceless: /ɵ/, /f/, 
/s/, /ʃ/) and sibilance (+.5 = sibilant: /s/, /z/, /ʃ/, /ʒ/; 
−.5  = nonsibilant: /f/, /v/, /ɵ/, /ð/). The third contrast 
reflected the relative place of articulation within a sibilant 
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class (+.5 = labiodentals and coronals: /f/, /v/, /s/, /z/; 
−.5 = interdentals and post-alveolars: /ɵ/, /ð/, /ʃ/, /ʒ/).

Because of difficulties in fitting the models with all of 
the fixed effects simultaneously, we created two mixed 
models testing different sets of fixed effects. These sim-
plified models, while not ideal, are justified because the 
effects that were split across models were all within par-
ticipants, orthogonal to each other (there was no shared 
variance), and not the primary experimental factor. The 
first model (the fricative model) examined the effect of 
information in the stimulus (the three fricative contrast 
codes as well as the gender of the talker). The second 
model (the vowel model) examined properties of the 
response (the two vowel codes). In both models, each 
fixed effect was added to the model along with its inter-
action with expectancy condition. Higher-order interac-
tions were not included because these models did not 
converge. Participant was the only random effect with 
enough levels to be estimated (there were only 10 talk-
ers, and these were split among the fixed effect, gender). 
We used the maximal random-effects structure with ran-
dom slopes of gender, fricative, and vowel on participant 
(in the relevant models).

The significance of the intercept was used to deter-
mine whether prediction accuracy within a condition 
was greater than chance. Typical statistical tests on the 
intercept for a logistic model compare the coefficient 
with 0, which assumes a chance level of .5. However, 
chance here was .25. Thus, to evaluate the model predic-
tions against .25, we added ln(3)1 to the original intercept 
(this will be reported as the adjusted intercept). We then 
computed a Wald Z statistic by dividing the adjusted 
intercept by the original standard error estimated from 
the model. Thus, this tested whether the mean perfor-
mance exceeded 25% correct responses. Models were 
implemented with the LME4 package (Version 1.1-7; 
Bates & Sarkar, 2011) in the R programming environment 
(Version 3.2.0; R Development Core Team, 2008).

Results

Prediction with no context

Before examining the effect of context, we first focused 
on whether participants were able to anticipate vowels at 
greater-than-chance level in the no-expectations condi-
tion alone. The results of the statistical models are shown 
in Table 1, and data are shown in Figure 1. For both 
models, the adjusted intercept was highly statistically sig-
nificant (p < .0001), which indicates above-chance pre-
diction accuracy. While the overall magnitude of the 
prediction was small (M = 32.28% correct; SD = 6.3%), 37 
of 41 participants predicted the vowel with a level of 
accuracy that was numerically higher than chance (and 
23 participants exceeded 30%). This finding suggests a 

small—though widespread—ability to predict the vowel 
from the preceding fricative alone.

We also found a number of effects of properties of the 
stimulus. The fricative model revealed that vowels were 
predicted more accurately following voiceless fricatives 
than voiced fricatives (p < .00001) and that fricatives from 
male talkers yielded more accurate predictions than frica-
tives from female talkers (p = .00011). Further, while 
there was no overall difference between accuracy follow-
ing sibilants and nonsibilants, there was a main effect of 
place within fricatives (p = .00003), which suggests that 
particular fricatives appear to be better carriers of coar-
ticulatory information than others (overall, the labioden-
tals and coronals, /f/, /v/, /s/, /z/, were superior to the 
interdentals and post-alveolars, /ɵ/, /ð/, /ʃ/, /ʒ/; Fig. 1a). 
The vowel model found a significant effect of vowel 
height (p = .0034) and vowel frontness (p = .0024), which 
suggests that more information was conveyed by the fric-
ative for certain vowel targets (high vowels and front 
vowels) than for others. The fricative preceding the high 
front vowel /i/ in particular led to quite good prediction 
(~40% correct; Fig. 1b). Overall, there is clearly substan-
tial information in the signal that participants can use to 
anticipate the vowel, even as different vowels appear to 
influence the fricative more, and different fricatives 
appear to carry that information more clearly.

Effect of expectancy condition

Our primary analysis examined the effect of expectancy 
condition on prediction accuracy. The results of these 
analyses are shown in Table 2 and Figure 2. Again, the 
adjusted intercepts were highly statistically significant in 
both the fricative and vowel models (p < .00001), which 
confirms that participants performed above chance when 
predicting the vowel. A similar pattern of main effects as 
in the no-expectations condition alone was also observed. 

Table 1.  Results of the Models Examining Prediction 
Accuracy in the No-Expectations Condition

Model and predictor b SE Z p

Fricative  
  Intercept (original) –0.760 0.046 — —
  Intercept (adjusted) 0.339 0.046 7.40 < .00001
  Gender 0.117 0.030 3.86 .00011
  Fricative voicing –0.171 0.032 –5.41 < .00001
  Sibilance 0.036 0.026 1.39 .17
  Place within sibilance 0.148 0.035 4.18 .00003
Vowel  
  Intercept (original) –0.788 0.046 — —
  Intercept (adjusted) 0.311 0.046 6.79 < .00001
  Vowel height –0.285 0.097 –2.93 .0034
  Vowel frontness 0.287 0.094 3.04 .0024
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There was a significant effect of talker gender (p < .00001, 
with better prediction for male than for female talkers), 
voicing (p < .00001, with better prediction following 
voiceless than voiced fricatives), and place of articulation 
within sibilance class (p < .00001, with better prediction 
following labiodentals and coronals than interdentals and 
post-alveolars). This time, the main effect of sibilance 
was also significant (p = .0015), with better prediction for 

the sibilants than the nonsibilants. As before, some vow-
els were easier to anticipate than others, with main effects 
of vowel height (p < .00001; high vowels were more 
accurately predicted than low vowels) and frontness (p < 
.00001; front vowels were more accurately predicted than 
back vowels). Thus, the same pattern of signal-driven 
effects observed in the no-expectations condition held in 
the full data set.
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Fig. 1.  Mean proportion of correct responses in the no-expectations condition (n = 41) as a function of (a) place of articulation and voicing of 
the fricative and (b) vowel sound being predicted. Error bars indicate ±1 SEM.

Table 2.  Results of the Primary Analyses Examining the Effect of Expectancy Condition 
on Prediction Accuracy

Model and predictor b SE Z p

Fricative  
  Intercept (original) –0.678 0.035 –19.51 < .001
  Intercept (adjusted) 0.420 0.035 12.09 < .00001
  Expectancy condition 0.167 0.069 2.41 .0161
  Gender 0.173 0.022 7.88 < .00001
  Fricative voicing –0.225 0.023 –9.84 < .00001
  Sibilance 0.054 0.017 3.18 .0015
  Place within sibilance 0.201 0.024 8.29 < .00001
  Expectancy Condition × Gender 0.117 0.044 2.67 .0075
  Expectancy Condition × Voicing –0.114 0.046 –2.50 .0123
  Expectancy Condition × Sibilance 0.035 0.034 1.03 .3
  Expectancy Condition × Place Within Sibilance 0.107 0.048 2.20 .0279
Vowel  
  Intercept (original) –0.702 0.036 –19.68 < .001
  Intercept (adjusted) 0.397 0.036 11.13 < .00001
  Expectancy condition 0.176 0.071 2.48 .0132
  Vowel height –0.345 0.062 –5.59 < .00001
  Vowel frontness 0.327 0.060 5.49 < .00001
  Expectancy Condition × Vowel Height –0.123 0.122 –1.00 .3
  Expectancy Condition × Vowel Frontness 0.079 0.118 0.67 .5
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Most important, the effect of expectancy condition 
was significant in both the fricative model (p = .0161) and 

the vowel model (p = .0132). Participants in the face+letter 
condition anticipated the vowel more accurately than 
those in the no-expectations condition. As Figure 2 
shows, with context to guide expectations, performance 
rose from 32.3% correct to 36.1% correct (SD = 7.8%). By 
and large, this effect of expectancy condition was not 
strongly moderated by the other factors we manipulated. 
There were no interactions of expectancy condition with 
properties of the vowel, and only gender, voicing, and 
fricative frontness interacted with expectancy condition.

These interactions were examined in separate follow-
up analyses. Since there were no interactions with vowel 
properties, these analyses were run using a reduced ver-
sion of the fricative model. While all of the fixed effects 
from the fricative model were included in each model, 
we report only the main effect of expectancy condition.

To understand the interaction of expectancy condition 
and gender, we ran separate models for male and female 
talkers. These found the main effect of expectancy condi-
tion to be significant for both genders (male: b = 0.226, 
SE = 0.086, Z = 2.623, p = .0087; female: b = 0.110, SE = 
0.056, Z = 1.97, p = .049). This suggests that the Gender × 
Expectancy Condition interaction was driven by the 
stronger effect of expectancy for male voices, even 
though both voices showed the effect (Fig. 2a). The anal-
ysis of the Expectancy Condition × Voicing interaction 
showed a similar pattern: The effect of expectancy was 
significant for voiceless fricatives (b = 0.224, SE = 0.084, 
Z = 2.64, p = .0083) and marginally significant for voiced 
ones (b = 0.111, SE = 0.059, Z = 1.88, p = .060). Finally, 
separate analyses at each place of articulation (Fig. 2c) 
showed significant effects of expectancy condition for 
labiodentals (b = 0.206, SE = 0.097, Z = 2.36, p = .018), 
coronals (b = 0.236, SE = 0.094, Z = 2.52, p = .012), and 
post-alveolars (b = 0.138, SE = 0.065, Z = 2.12, p = .034), 
as well as a marginal effect for interdentals (b = 0.094, 
SE = 0.056, Z = 1.69, p = .092). Thus, these interactions 
were not driven by a reversal or absence of the expec-
tancy effect, but rather by differences in its magnitude.

Across all of these interactions, a clear pattern was 
observed: The conditions in which the baseline level of 
prediction was the lowest (female talkers, voiced frica-
tives, and interdentals) showed the smallest effect of 
expectancy condition. This suggests that when the raw 
acoustics of the fricative contain the most bottom-up 
information, participants are even better able to harness 
it if they have greater expectations about the talker and 
fricative. Thus, in accord with data-explanatory accounts, 
expectations enhanced participants’ use of information in 
the signal, rather than providing information that was not 
present (as is usually observed in studies of top-down 
effects). However, this effect was limited to properties of 
the fricative (which are likely to mask the coarticulatory 
information); variation in the degree to which different 
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the fricative, separately for participants in the no-expectations (n = 41) 
and face+letter (n = 43) conditions. Error bars indicate ±1 SEM.
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vowels could be predicted did not interact with expec-
tancy condition. This is also in accord with data-explana-
tory accounts. The expectations we gave participants 
help to account for variation in the fricative’s usefulness 
in uncovering the vowel; they do not offer much infor-
mation that would differentially affect different vowels.

Reaction times (RTs)

Finally, we analyzed RTs to determine whether the avail-
ability of additional information makes prediction more 
efficient or whether this added information result in 
slower processing. RTs were slow overall, reflecting the 
difficulty of the task, but they were more than 100 ms 
faster in the face+letter condition (M = 1,494 ms) than in 
the no-expectations condition (M = 1,636 ms). However, 
RTs were variable both across participants (SD = 456 ms), 
and within participants (mean of the SD = 855 ms). To 
better understand this variability, we conducted an ex-
Gaussian analysis, which models the distribution of RTs 
as the product of a Gaussian distribution (with parame-
ters µ and σ) and an exponential function (to model the 
long tails, with parameter τ). We fit this distribution to 
each participants’ RTs (for trials with correct responses 
only) using a gradient descent algorithm that maximized 
the log-likelihood of the data. (Fits could not be obtained 
for 4 participants in the no-expectations condition).

This analysis showed much lower values of µ (M = 710 
ms) than the raw means, which suggests that the high 
average RTs may have been driven by long tails of the 
distribution. More important, participants in the face+letter 
condition showed significantly faster values of µ (M = 
644.7 ms) than those in the no-expectations condition 
(M = 787.6 ms), t(78) = 2.05, p = .044; the two groups did 
not differ for either σ or τ (ts < 1). While there were insuf-
ficient data for an ex-Gaussian analysis within various 
subconditions, a comparison of RTs suggests that for 
most of the fricatives and vowels, RTs were faster when 
expectations were available than when they were not 
(Fig. 3).

Discussion

There were three key findings of this experiment. First, 
we showed that listeners can use expectations about 
what a phoneme should sound like to make faster and 
more accurate predictions about it. Second, these expec-
tations can derive from sources that are arbitrarily 
related to speech categories and not directly related to 
what is being predicted. Finally, this expectation effect 
is greater when the stimulus contains more coarticula-
tory information to be uncovered. This supports the 
idea that prediction (and speech perception more gen-
erally) derives from processes attempting to explain the 

input, not simply categorize it. Our results hint at a 
chain of predictions: Listeners use context to develop 
expectations for the specific sound of the fricative; 
when the fricative is heard, they compare these expec-
tations with the input to make further predictions about 
the vowel to be heard.

Several concerns remain. First, our experiment does 
not offer a clear picture of the time course of these 
effects. While eye tracking studies suggest that predic-
tions based on other types of anticipatory coarticulation 
occur before the predicted phoneme (Gow & McMurray, 
2007; Salverda et al., 2014), it is unknown whether con-
textually mediated prediction operates similarly.

Second, we cannot separate the contributions of the 
social and orthographic cues. However, we suspect the 
former are more important. Since the fricatives were 
unambiguous recordings that can be identified accurately 
(McMurray & Jongman, 2011), the orthography may not 
have offered participants new information. In contrast, 
the talker cannot be easily identified from frication alone. 
Moreover, single letters do not strongly bias speech per-
ception (Fowler & Dekle, 1991), while talker effects are 
robust (Strand, 1999). Either way, neither information 
source directly predicts the vowel, and both are arbi-
trarily related to the fricative. This suggests that abstract, 
learned information augments prediction.

Third, we cannot make strong claims about informa-
tion flow. Contextual expectations could exert a true 
feedback effect, altering perceptual encoding of the frica-
tive. This would be consistent with predictive-coding 
accounts from neuroscience (Rao & Ballard, 1999) and 
with relative-cue-encoding accounts of speech (McMurray 
& Jongman, 2011). In these accounts, expectations take 
the form of perceptual-level predictions about what a 
stimulus should sound like to enable more rapid com-
parison with the actual input. Conversely, context could 
participate at later decision stages, biasing the system to 
select an interpretation (fricative, talker, and vowel iden-
tities) that best explains the data, consistent with Bayesian 
(Kleinschmidt & Jaeger, 2015) and information-integra-
tion (Smits, 2001) accounts.

Our study echoes the long-running debate on feed-
back in speech perception (McClelland, Mirman, & Holt, 
2006; Norris, McQueen, & Cutler, 2000) but with an 
important distinction. Traditional feedback accounts 
emphasize how high-level information fills in or restores 
missing or ambiguous sounds, aligning the percept with 
expectations. Our account instead stresses the lack of 
alignment or contrast between signal and expectations. 
For example, an /s/ with a lower-than-expected frequency 
indicates that a /u/ is next. We showed that context infor-
mation—which (unlike lexical information) does not 
directly cue the relevant phoneme—leads to more precise 
expectations and better detection of the violations.
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Our findings have implications for the problem of acous-
tic variability. The idea that listeners are actively forming 
(and evaluating) hypotheses about talkers and phonemes 
is a clear prediction of computational models, such as 
C-CuRE (McMurray & Jongman, 2011), which have been 
shown to account for much of the acoustic variability in 
speech, and our results confirm a prediction made by Cole 
et al. (2010) in this framework. More broadly, our results 
are consistent with data-explanatory principles in other 
frameworks (Kleinschmidt & Jaeger, 2015; Smits, 2001) and 
with neuroscience suggesting independent pathways for 
processing a talker’s voice and for phonological informa-
tion (von Kriegstein, Smith, Patterson, Kiebel, & Griffiths, 
2010). Data explanation also offers an alternative account 
of findings that knowledge of talker voice influences lexical 
processing (Goldinger, 1998; Nygaard, Sommers, & Pisoni, 
1994); rather than requiring detailed exemplar memory, 
similar effects could be accomplished by interactions across 
pathways. This may explain why failure of these interac-
tions is involved in phonological impairments such as dys-
lexia (Perrachione, Del Tufo, & Gabrieli, 2011).

Our results speak to the problem of time and suggest 
that the same data-explanatory mechanisms that help lis-
teners account for variability also underlie prediction: 
Residual variance that cannot be attributed to current 
expectations must be due to upcoming material. However, 
expectations may not only function prospectively. In 
speech (and other areas of perception), contextual fac-
tors are not always time-locked to stimuli: Sometimes the 
talker is known before speech begins; other times, only 
once they have spoken. A companion study using frica-
tives from the same corpus shows that contextual expec-
tations can also function retrospectively. Apfelbaum et al. 

(2014) manipulated the gender and vowel in the vocoid 
following the fricative—misleading listeners about the 
source of the fricative after they heard it. This reduced 
fricative-identification accuracy, which suggests that lis-
teners use later information to form expectations about 
what a previous phoneme should have sounded like and 
revise previous (partial) interpretations.

These findings also dovetail with neuroscience on pre-
dictive coding that reports reduced neural activity in 
auditory cortex when inputs match expectations (sug-
gesting a reduced error signal; see Gagnepain, Henson, 
& Davis, 2012; Houde, Nagarajan, Sekihara, & Merzenich, 
2002; and see Blank & von Kriegstein, 2013, for ana-
logues in visual speech). This hints that our effect may be 
situated in early auditory areas. Our work complements 
these studies by showing that context-driven expecta-
tions do not just make processing more efficient—they 
make it more accurate. Further, while neuroscience has 
examined expectations from nearby representations that 
directly predict specific sounds (lexical processes, speech 
production, and visual speech), our study demonstrates 
that expectations can also be based on distal representa-
tions that provide only context.

Data-explanatory or generative processes are part of 
many theories of speech perception. These results help 
refine understanding of such mechanisms. Recognition by 
synthesis, a key part of motor theory (Liberman & Mattingly, 
1985), evaluates hypotheses about the underlying cause of 
acoustic input (see also Pickering & Garrod, 2013, for 
broader applications in language). Our study suggests 
that  contextual information is not solely articulatory, 
broadening the factors involved in such analysis. Likewise, 
Bayesian frameworks offer a similar data-explanatory 
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Fig. 3.  Mean reaction time as a function of (a) place of articulation of the fricative and (b) vowel sound being predicted, separately for participants 
in the no-expectations (n = 41) and face+letter (n = 43) conditions. Error bars indicate ±1 SEM.
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approach as a form of rational inference (Kleinschmidt & 
Jaeger, 2015). However, data explanation extends beyond 
any particular meta-theoretical framing. It can be imple-
mented by something as simple as linear regression (in 
speech perception; Cole et al., 2010; McMurray & Jongman, 
2011) or as distance between normative (prototype) repre-
sentations and the input (e.g., in face perception; Rhodes 
& Leopold, 2011).

Data explanation and predictive coding are important 
theories in visual perception (Rao & Ballard, 1999) and 
motor control (Miall & Wolpert, 1996; Wolpert & Flanagan, 
2001) and have been posited as unifying theories for cog-
nitive science (Clark, 2013). Our work suggests a striking 
analogue in speech. Listeners evaluate speech relative to 
perceptual expectations—expectations that can be shaped 
by high-level knowledge. This comparison helps antici-
pate future events and enhance perceptual analysis by 
accounting for, rather than simply categorizing, the input.
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